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Summary 

This report introduces some practical methods that can be used to quantify the 
uncertainties involved in geomechanical properties estimation. Among the various 
aspects of uncertainties, this report mainly focuses on uncertainties involved in 
regression when deriving mechanical properties from empirical correlations and 
spatially-averaged properties. In addition, it also briefly introduces other types of 
uncertainties that can be involved in the entire process of geomechanical properties 
estimation with conceptual methods. In overall context of a risk assessment, the 
information described in this report can be used to prepare statistical inputs for the 
hazard assessment phase of CO2 containment risk assessment. The main contents of this 
report can be summarized as follows: 

• A depth profile of geomechanical inputs are mostly estimated indirectly from 
acoustic waves or petrophysical properties using semi-empirical models and 
calibrated by laboratory or field measurements. The indirect estimations are 
mainly based on empirical correlations from field/laboratory measurements 
and/or simplified physical understandings. Thus, the estimations can naturally 
involve uncertainty caused by the simplification and lack of physical 
understanding in the empirical correlation.   

• When the depth-averaged geomechanical properties are estimated from a well-
log or petrophysical information, the estimation can involve the following 
uncertainties: 

o Statistical parameter uncertainty, which can be associated with limited 
number of observations or field measurements;   

o Model uncertainty, which can be associated with imperfection of a 
physical model – for example model used to transform well-log 
information to rock mechanical inputs – and a probabilistic model, which 
is related to the form of the statistical parametric distribution and 
regression model; 

o Spatial variability, which is related to natural randomness of a parameter 
varying from one point in space to another; and 

o Observation (measurement) error, which is related to imprecisions 
associated with measurements such as limitations of equipment or 
operational conditions. 

• A few quantification methods for uncertainties listed in the previous bullet point 
are introduced in this report. As a method to quantify statistical parameter 
uncertainties, a confidence and prediction interval is introduced. Then, the 
concept of Bayesian approach is introduced as a means for quantifying model 
uncertainties. For quantification of spatial variability, a simplified approach 
using random fields is presented. 

• Finally, the uncertainty quantification procedure introduced in this report is 
demonstrated using a dataset from the North Sea. 

This report clearly demonstrates that statistics can be a helpful tool to estimate reliable 
ranges of geomechanical input that cover an area of interest. Furthermore, it can be 
useful to determine likelihoods of the data's upper and lower limits in a systematic way 
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without relying entirely on engineering judgement. Note that this report only addresses 
basic approaches for uncertainty quantification with simplified assumptions. In future 
studies, more advanced uncertainty quantification methods (e.g., Bayesian approaches) 
should be actively adopted for uncertainty quantification of rock mechanical property 
estimation.   
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1 Introduction 
 
This document provides a brief introduction on how to quantify uncertainties involved 
in spatially-averaged inputs required for geomechanics modelling. This work has been 
carried out through ACT SHARP project (EC Project no. 691712), Deliverable D5.1: 
Internal guidelines for input uncertainties quantification. 
 
1.1 Background and motivation 
The subsurface is inherently heterogeneous because of spatially varying geological 
processes involving natural randomness. In addition, data processing and interpretation 
process can also result in errors or uncertainties in the estimated or interpreted rock-
mechanical properties because of our lack of knowledge on the physical phenomena. 
Usually, a geomechanical model needs rock mechanical properties that may cover a 
large range of interest (e.g. from less than a few metres of a wellbore to a few km of 
reservoir). The estimation of the rock mechanical properties thus relies on upscaling of 
point source measurements (e.g., laboratory mechanical tests, leak-off tests from fields, 
etc.) by combining with indirect measurements (e.g., sonic logging, 2D or 3D 
geophysical survey) covering the area of interest. This upscaling process using indirect 
measurements needs a model that can transform the measured parameters to mechanical 
properties of interest (e.g., from acoustic wave velocity to static mechanical properties). 
The transformation model usually includes assumptions and simplifications, and the 
imperfect nature of the transformation models can result in uncertainties or errors in the 
estimation. Figure 1 shows a typical example of estimated profile of best-, low-, high-
estimate of Young's modulus along the depths. The profiles in the figures were estimated 
by indirect measurement using the sonic log (left figure). Because of the heterogenous 
nature of the subsurface, the 1D profile of the sonic log shows significant fluctuation. 
When the model transforms the measured sonic velocity to the static Young's modulus, 
the estimation (i.e., the yellow solid line in the right figure) shows discrepancy with 
measured lab-data (i.e., a red dot) because of simplification and idealization involved in 
the transformation model. The fluctuated features of the inputs are typically averaged 
for each layer or represented as a trend line using 1D regression. Usually, geomechanical 
stability assessment is mostly governed by weak points that are related to high- or low-
estimates rather than its average. However, it is quite rare to estimate the likelihoods of 
the data's upper and lower limits using a systematic statistical approach without 
engineering judgement. Consequently, the uncertainties in geomechanical proprieties 
resulting from lack of knowledge and subsurface randomness can result in inaccurate 
assessment of CO2 storage integrity (e.g., caprock integrity, fault stability, etc.). It is thus 
important to have a better understanding of the possible types of uncertainties in the 
geomechanical properties estimation and associated quantification methods to estimate 
reliable ranges of geomechanical input for the area of interest and problem of concern.  
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Figure 1  Example of typical 1D profile of Young's modulus estimated from sonic log. 

 
1.2 Objective and scope of work 
This report aims to introduce some practical methods that can be used to quantify the 
uncertainties involved in geomechanical properties estimation. Among the various 
aspects of uncertainties, this report mainly focuses on uncertainties involved in 
regression when deriving mechanical properties from empirical correlations and 
spatially-averaged properties. In addition, it also briefly introduces other types of 
uncertainties that can be involved in the entire process of geomechanical properties 
estimation with conceptual methods. In overall context of a CO2 containment risk 
assessment, the information described in this report can be used to prepare the statistical 
inputs for a hazard assessment. 
 
This document consists of following sections: 

• Section 2 describes some examples of methodology for estimating the input 
required for geomechanics modelling. 

• In Section 3, typical types of uncertainty that can be involved in estimating 
geomechanical properties are introduced. 

• Section 4 describes methods on how to covert the inputs uncertainties that came 
from different sources defined in Section 3 to statistical parameters (e.g., mean, 
standard deviation, lower and upper bounds). This section mainly focuses on 
the uncertainties from the limited number of data (i.e. statistical uncertainty) 
and the natural variability. 
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• In Section 5, an example showing how to quantify spatial variability involved 
in depth-averaged parameters is demonstrated using a dataset from the North 
Sea. 

• Summary and suggestions for further studies are addressed in Section 6. 
 

2 Input properties for geomechanics modelling 
 
This chapter briefly describes how to estimate a depth profile of geomechanical input 
properties, which are used for geomechanical assessment of reservoir and seal integrity, 
from indirect measurement (e.g., sonic logs). In-situ stress conditions, elastic properties 
and strength properties are considered crucial input. Access to data for estimating these 
parameters may vary considerably depending on the development stage of the project 
and numbers of wells available. This section focuses on the Norwegian North Sea 
practices and the correlations typically used for site development when one well has 
been drilled and well logs, rock mechanical data and formation stress tests are available. 
Note that this section only covers basic properties that can be used to demonstrate the 
uncertainty quantification methods in the following sections. A comprehensive review 
of the rock mechanical property estimation methods is beyond the scope of this report. 
 
2.1 In-situ stress condition 
 
In the following, we will outline few example methods that are widely used to derive 
depth profiles for the stress conditions based on combining information from well logs 
and one or more stress tests in the reservoir such as extended leak off tests (XLOT).   

In-situ stress conditions are defined as three principal stress orientations and their 
magnitudes. Within the North Sea sedimentary basin, although some variations are 
observed, it is common to assume a normal faulting regime (Andrews et al., 2016). In a 
normal faulting regime, the maximum principal stress σ1 is vertical (σ1 = σv) and the 
intermediate principal stress σ2 and minimum principal stress σ3 are horizontal (σ2 = σH 
and σ3 = σh). In order to assess the effective stress σ' conditions, the pore pressure (p) is 
used.  

Vertical stress σV is determined from integration of density logs. The accuracy will 
depend on the coverage of density log for the site. Normally, the upper stratigraphy is 
not logged and one would need to assume a density for those layers. Vertical stress 
generally increases with depth with a gradient between 20–22 kPa/m. This is equal to an 
average density for sedimentary rocks on Norwegian Continental Shelf (NCS) of 
between 2.04–2.24 kg/m3 (Andrews, 2016).  

Minimum horizontal stress is often determined by extended leak off tests (XLOT) in 
combination with sonic log method (Andrews and de Lesquen, 2019). The XLOT test is 
the most accurate test method for measuring the minimum horizontal stress and has a 



 

p:\2021\05\20210518\calculations and wp activities\wp5 risk quantification\reports\d5.1_input uncertainty quantification\rev1\20210518-01-
r_input_uncertainty_quantification_v1_final_published.docx 

Document no.: 20210518-01-R 
Date: 2022-04-26 
Rev.no.:  1 
Page: 10  

coverage of a few metres, while sonic log method gives variation along the well. The 
XLOT test measures the minimum horizontal stresses by measuring the pressure 
recorded at the instance the fractures in a wellbore close. A typical pressure record for 
XLOT is shown in Figure 2. When XLOT data are not available for a specific field, 
XLOT trends from nearby areas may be utilized. In other cases, when XLOT data are 
not available, then leak off pressure (LOP) from leak off tests (LOT) can be an indicator 
for the minimum horizontal stress. However, LOP-value has large uncertainties and 
normally varies between fracture closure pressure (FCP) and formation breakdown 
pressure (FBC).  

 
Figure 2 Illustration of pressure records for a XLOT test (from Raaen et al., 2006). 

The horizontal stress profile can be calculated from the vertical stress 𝜎𝜎𝑣𝑣, initial pore 
pressure 𝑝𝑝𝑜𝑜, the ratio between effective horizontal and vertical stress (K0). When we 
assume that the horizontal stresses are primarily governed by elastic depositional 
history, the K0 value and dynamic undrained Poisson's ratio (μ) can be calculated from 
equations 2.1 and 2.2, which again are derived based on the compressional and shear 
wave velocities (Vp and Vs) using elastic equation from Eq.2.3; 

 
𝜎𝜎ℎ = 𝐾𝐾𝑜𝑜(𝜎𝜎𝑣𝑣 − 𝑝𝑝𝑜𝑜) + 𝑝𝑝𝑜𝑜 (2.1) 

 
𝐾𝐾0 =

𝜇𝜇
1 − 𝜇𝜇

 (2.2) 

 

𝜇𝜇 =
1
2

�
𝑉𝑉𝑝𝑝
𝑉𝑉𝑠𝑠
�
2
− 2

�
𝑉𝑉𝑝𝑝
𝑉𝑉𝑠𝑠
�
2
− 1

 (2.3) 

 
The stress estimation methods described above may involve some uncertainties because 
of our lack of knowledge about the factors affecting the in-situ stresses. The estimate of 
the vertical stresses is relatively accurate because of the robust theoretical basis about 
the relationship between the overburden loading and the density. However, the pore 
pressure and the horizontal stress estimation from well-logs involves uncertainties 
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related to simplification behind its estimation model. Although the estimates of 
horizontal stresses are based on simplified physical models (e.g., elasticity and uniaxial 
strain conditions during compaction), the horizontal stresses can be governed by visco-
plastic behaviour during complex geological histories and tectonic stresses. A limitation 
of the model is that sometimes S-wave logs are missing. Estimating S-wave velocity 
from other log information can result in another layer of uncertainties in the stress 
estimation.  

2.2 Static rock mechanical properties 
This section will outline a few example methods that are widely used to derive depth 
profiles of geomechanical properties by combining information from well logs and 
laboratory-measured properties.  
 
Triaxial tests are the most common and standard method to measure geomechanical 
properties directly. A standard triaxial test typically uses small cores that are 1.0 – 1.5 
inches (0.0254 – 0.0381 m) in diameter and twice the diameter in height. The test setup 
can control stresses/deformation in the vertical and horizontal directions and pore 
pressures to simulate various in-situ stresses and stress paths. The static elastic modulus 
is typically estimated from a tangential slope of a stress-strain curve at a 50% peak stress 
level. The shear strength can be measured by the peak stress during shear loading. 
Because of the relatively high cost of coring from a wellbore and triaxial tests, the 
number of tests is typically limited to 1 or 2 tests for a specific layer, and the tests are 
commonly used to calibrate the preliminary results estimated from indirect 
measurement(s).  

Empirical correlations between rock mechanical properties and the acoustic or 
petrophysical properties are commonly used for preliminary estimation of rock 
mechanical properties. The coefficients of the empirical correlation are typically 
determined by a regression model using multiple observations from laboratories and 
fields. Wave velocity, resistivity, and petrophysical properties (e.g., porosity) are pair 
attributes widely used as inputs for empirical correlations. For example, undrained 
Young's modulus and uniaxial compressive strength (UCS) can be derived from a 
compressional sonic log by the empirical correlation from Horsrud (2001). The 
correlations are based on laboratory-measured rock-mechanical properties and Vp in 
km/s using the North Sea mudstones and shales. The correlations for the undrained 
Young's modulus in GPa and the UCS in MPa are expressed in equations 2.4 and 2.5, 
respectively. 
 

𝐸𝐸 = 0.076 ∙ 𝑉𝑉𝑝𝑝3.23 (2.4) 

𝑈𝑈𝑈𝑈𝑈𝑈 = 0.77 ∙ 𝑉𝑉𝑝𝑝2.93 (2.5) 

Dynamic- to static-modulus conversion is also one of the widely used method to get a 
static elastic property profile from wave velocities. The equations for dynamic Young's 
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modulus (Edyn) and dynamic Poisson's ratio (νdyn) using wave velocities (Vp and Vs) and 
a density (ρ) are: 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑 =
𝜌𝜌𝑉𝑉𝑠𝑠2�3𝑉𝑉𝑝𝑝2 − 4𝑉𝑉𝑠𝑠2�

�𝑉𝑉𝑝𝑝2 − 𝑉𝑉𝑠𝑠2�
(2.6) 

𝜈𝜈𝑑𝑑𝑑𝑑𝑑𝑑 =
�𝑉𝑉𝑝𝑝2 − 2𝑉𝑉𝑠𝑠2�
2�𝑉𝑉𝑝𝑝2 − 𝑉𝑉𝑠𝑠2�

(2.7) 

The dynamic modulus is typically several times higher than a static modulus. The reason 
for the observed significant discrepancy between dynamic and static properties is known 
to be from various reasons, including the effect of strain rate, drainage condition, 
heterogeneities, anisotropy, strain amplitude, etc. (Fjær, 2019). Because of its 
complexity related to factors affecting the elastic properties, it is not straightforward to 
include all factors into the model that can convert dynamic to elastic properties. Instead, 
it is common to use a ratio between dynamic- and static- stiffness. According to Grande 
and Cuisiat (2008), static undrained shear modulus of shale from the North Sea is 3-5 
times lower than that from lab-measured dynamic stiffness. For a sandstone from the 
North Sea, the weak rock tends to have higher discrepancy between static and dynamic 
stiffness (e.g., an order of magnitude difference) than a stiff cemented rock (e.g., 20-
30% discrepancy for well cemented Berea sandstone) (Fjær et al., 2008). The differences 
between dynamic- and static- stiffness decreases with higher confining stresses.  

Similar to the limitation mentioned earlier about the in-situ stress profile estimation, the 
models used to estimate the rock mechanical properties partly or fully rely on empirical 
correlations. Hence, they naturally involve uncertainty stemming from simplifications 
and missing/incomplete physical understanding in the empirical correlation. In 
particular, the discrepancy between laboratory and field condition can result in 
uncertainties in the estimation. Most correlations between velocity and mechanical 
properties have been calibrated based on observation pairs from laboratories (e.g., 
laboratory-measured Vp vs. static properties), but are used to make predictions based on 
field observation of velocity(Vp) from a well log. The different conditions between the 
field and the laboratory (e.g., temperature, heterogeneity and anisotropy from 
microfractures, borehole quality, mud invasion) can result in estimation errors. 
 

3 Types of uncertainty 
 
Quantifying and propagating uncertainties in engineering problems requires recognizing 
and identifying sources and types of uncertainty. This section discusses these. Section 
3.1 briefly introduces a more philosophically-oriented epistemic/aleatory classification 
of uncertainties. Understanding this distinction is important because, to some degree, it 
shapes one's strategies for dealing with uncertainties in practice. Section 3.2 then 
discusses a more application-oriented classification of uncertainties. The goal is to 
present a comprehensive overview of the key uncertainty types and not an exhaustive 
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discussion of all components involved in geomechanical assessment of reservoir and 
seal integrity. Section 3.3 provides more context by discussing predicting modulus of 
elasticity from sonic log data. 
 
When discussing uncertainty quantification for a problem in a specific domain, a careful 
use of terminology is warranted to prevent confusions between the mathematical 
uncertainty quantification and statistical terminology on one hand and the domain-
specific terminology on the other. For instance, the term "parameter" may be understood 
as soil or rock property (e.g., friction angle or UCS) in an engineering context, while in 
a statistical modelling context "parameter" usually refers to unknown, un-observable 
quantities that are estimated from data (e.g. mean, variance or regression coefficients are 
statistical parameters).  Therefore, when considering uncertainty quantification, UCS 
would be referred to as observable data (or random variable), while mean UCS would 
be a (statistical) parameter. The coefficients of the regression models in Equations 2.4 
and 2.5 are also parameters.  
 
Finally, it is noted that in this section, the term geotechnical engineering refers to both 
soil and rock engineering as there is considerable overlap between the uncertainty 
quantification literature on the two. 
 
3.1 Aleatory and epistemic uncertainties  
 
Uncertainty is often characterised as either epistemic or aleatory, according to its source: 
epistemic uncertainty is attributed to imperfect knowledge while aleatory uncertainty 
arises from the inherent randomness or variability in systems (e.g., Ferson and Ginzburg, 
1996; O’Hagan and Oakley, 2004; see also, e.g., Baecher and Christian (2005) for a 
discussion in the context of geotechnical engineering). The term epistemic is derived 
from the Greek word “episteme”, which means knowledge, and aleatory is derived from 
the Latin “alea” – meaning rolling of dice. Also, epistemic and aleatory uncertainties are 
sometimes thought of as reducible and irreducible uncertainties, respectively. That is, 
by definition, epistemic uncertainty can be reduced by obtaining better or more 
information about the system while the natural randomness in the system cannot be 
reduced. 
 
Among others, O’Hagan and Oakley (2004) discuss a more nuanced point of view where 
it is argued that what is referred to as irreducible randomness in a system would be 
eliminated (or at least reduced) if we were able to recognise and specify more conditions 
within our description of the system. Therefore, any uncertainty reduced in such a 
manner must really have been epistemic. As an example, consider the uniaxial 
compressive strength (UCS) of intact rock for which we have many laboratory tests on 
intact rock specimens from the same formation. We can construct a simple probabilistic 
model, say, a normal distribution with two parameters mean and variance. It is noted a 
normal distribution is used here as an example because it admits the possibility of 
negative values at the left hand tail of the distribution, which for properties like stress or 
young's modulus are generally non-physical. The randomness or “residual variance” 
estimated by such model is considered to be natural variability and thus irreducible. 
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However, it is possible to argue that by adopting for example a micro-mechanics 
framework and considering contributions of individual constituents of the material to its 
macro-scale properties, one could “explain” some of the above-mentioned randomness 
and obtain more accurate predictions of UCS for individual specimens. This is 
essentially the argument of determinism that if we knew the exact position and velocity 
of every particle, we could predict the future exactly, and thus all uncertainty is 
epistemic in nature. O’Hagan and Oakley (2004) further add that perhaps true 
randomness exists in some phenomena as suggested by quantum physics. However, this 
does not extend to the scales on which most models (including those used in engineering) 
operate. Therefore, although philosophically somewhat disputed, it is useful to maintain 
the conceptual aleatory/epistemic distinction in the context of engineering problems: 

- it is important to quantify aleatory uncertainty for quantities whose 
measurements exhibit variation and no effort is made in gaining better 
understanding of the factors contributing to this uncertainty (or, it is impractical 
to do so at an engineering scale); and, 
 

- identifying the epistemic portions of uncertainty is equally important, for 
instance to address the issue of parameter uncertainty due to limited data. 
Furthermore, quantifying epistemic uncertainty allows for better allocation of 
resources for uncertainty reduction. 

Other than the aleatory/epistemic classification, there are also taxonomies of uncertainty 
that are more application-oriented and hence more suitable for engineering practice. The 
following section discusses such classifications in more detail. 
 
3.2  An application-oriented classification of uncertainties 
 
Engineering reliability, risk and decision problems are solved within the confines of a 
model universe (Der Kiureghian and Ditlevsen, 2009). The model universe contains a 
set of physical and probabilistic models, which are mathematical idealizations of reality 
employed to render a solution for the problem at hand. This is also comparable to the 
concept of the small world from foundations of statistics and decision theory which 
refers to the self-contained logical world of a model (Savage, 1972). The model universe 
may contain inherently uncertain quantities; e.g. there is variation in laboratory 
measurements of modulus of elasticity of intact rock. Another possibility is that a 
quantity might be measured with insufficient precision, or indirectly, i.e. estimated from 
other (proxy) physical properties; an example of this is finding modulus of elasticity E 
from in-situ P-wave data Vp. The sub-models in the model universe are also imperfect, 
giving rise to additional uncertainties. For instance, the empirical regression model used 
for transforming Vp data to modulus of elasticity is not perfect. Therefore, quantification 
and propagation of uncertainties should address these uncertainties. Furthermore, as 
mentioned earlier in the UCS example, the nature and character of uncertainties should 
be discussed within the confines of the model universe. 
 
There is no unique taxonomy of uncertainties, but most of the existing ones include 
classifications such as parameter uncertainty, model inadequacy (or method 
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uncertainty), residual variability, parametric variability, observation (measurement) 
error and code or computational uncertainty (e.g. Kennedy and O’Hagan, 2001), all of 
which are relevant and understood to some degree in engineering. Sections 3.2.1-3.3.3 
discuss parameter, model, measurement and computational uncertainty in more detail 
and with reference to data involved in risk assessment for CO2 storage containment. 
Furthermore, context-dependent comments about aleatory or epistemic nature of each of 
these uncertainties are provided. To facilitate these discussions, first terminology and a 
rather simple notation are introduced. 
 
We refer to basic random variables as those that are input to the engineering model(s) 
(e.g., geo-material strength and stiffness properties, in-situ stresses and geometrical 
data). They can be scalar or vector and are denoted as Y.  Parameters on the other hand 
are the unknown quantities (e.g. mean, standard deviation, regression coefficients) that 
are estimated from data, and denoted θ. There are other random variables that are not 
necessarily direct input to the engineering models but are used (e.g. as proxy measures) 
to predict basic random variables. An example of this is in-situ P-wave velocity well log 
data used to predict static rock mechanical properties. These are denoted X. 
 
When measured directly, basic random variables are characterised using probabilistic 
sub-models fY with (statistical) parameters θf, denoted fY(Y; θf). For example, f could be 
a normal distribution with parameters θf mean and standard deviation and used for 
modelling the basic random variable UCS.  
 
Due to high costs and difficulties involved with direct measurements, it is common to 
establish and use empirical relationships between proxy variables X and the random 
variables of interest Y. That is, the variable of interest Y is obtained by transforming the 
easier-to-measure variable(s) X, usually via empirical relationships that are commonly 
referred to as empirical transformations or correlations in the geotechnical literature.  
This can be thought of as indirect measurement of Y. Transformation models are denoted 
TY with parameters θT, hence TY(Y, X; θT). Empirical relationships addressed in Section 
2 (e.g., relationship between wave velocities and the in-situ stresses/static rock 
mechanical properties) are examples of commonly used transformation in reservoir 
geomechanics. 
 
Finally, the (directly measured or transformed) basic random variables are used as input 
to engineering model M(Y; θM); predicting caprock integrity during CO2 injection, a 3D 
field-scale geomechanical model or an analytical approach using Mohr-Coulomb failure 
criterion are examples of the engineering model M(Y; θM). This aspect of models is not 
the focus of this document and is merely mentioned for completeness. 
 
3.2.1 Parameter uncertainty 
 
There is inherent uncertainty (aleatory randomness) associated with the directly 
measured basic random variables Y. This randomness is captured by the dispersion 
parameter (e.g. standard deviation, variance, coefficient of variation) of the distribution 
fY(Y; θf). For a given statistical model fY(Y; θf), this uncertainty does not reduce with 
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obtaining more data, and only better (more precise) estimates of the dispersion parameter 
could be obtained. 
 
The (statistical) parameters θf (including the dispersion parameter) are estimated from 
observed data and are thus uncertain. This uncertainty is usually referred to as 
(statistical) parameter uncertainty and is epistemic in nature: it reduces as we obtain 
more data. For instance, the standard error1 of the sampling distribution of the mean is 
proportional to 1/√𝑛𝑛 where n is the sample size (see also section 4.1). That is, as more 
data become available, the mean is estimated with a higher precision. This possibility of 
reduction in uncertainty implies epistemic uncertainty. 
 
It is emphasized again that such discussions of aleatory/epistemic uncertainty are only 
justified within the confines of the specified model. For instance, a statistical model that 
accounts for spatial variability of UCS may result in smaller residual variance, and hence 
implies smaller unmodelled randomness. Such a model would also have different 
parameters and thus different epistemic uncertainty compared to the simple parametric 
distribution fY(Y; θf). 
 
Similar arguments could be made for transformed variables Y. The transformation TY(Y, 
X; θT) is usually formulated as a regression model with Y as the response (also known 
as outcome or dependent) variable and X as the predictors (also known as independent 
or regressor) variables. The vector θT includes the regression coefficients and the 
residual variance of Y and is estimated with less uncertainty as larger data become 
available. 
 
3.2.2 Model uncertainty 

Models are abstract mathematical idealizations of real-world processes. They are based 
on assumptions and simplifications, and thus no model can really be said to be perfect 
or correct. This is perhaps best stated by Box and Draper (1987) in their famous 
statement “all models are wrong, but some are useful”. This is particularly true from a 
practical engineering point of view where many models give sufficiently accurate 
predictions that allow analysis and design. Model uncertainty is undoubtedly epistemic: 
it is always possible to improve the model and hence reduce the uncertainty by, for 
example, including more descriptive parameters, adopting more realistic assumptions, 
or employing a different functional form all together.  
 
Model uncertainty – also called model error, model bias, method bias, method 
uncertainty, or model omissions in different fields of science and engineering – is 
generally defined as the difference between the true mean value of the real-world process 
and the model output at the true values of the inputs (e.g. Kennedy and O’Hagan, 2001; 
Der Kiureghian and Ditlevsen, 2009). This difference is often characterised using a 
random variable, the statistical properties (usually mean and standard deviation) of 

 
1 The term "standard error" is used in the frequentist statistics literature and refers to the standard deviation of the sampling distribution of 
parameters; the term "standard deviation" is used when discussing variability of observed data. In the Bayesian context (see section 4.2.1) the 
term standard deviation is used for both.   
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which are estimated from data gathered on the real-world process, and further used as a 
correction or modifying factor when using the model for making predictions, or for 
design in an engineering context. 
  
The terms “model” and “model uncertainty” could refer to different things as discussed 
in the following. 
 
Physical models 
A model M(Y; θM) could describe a physical or mechanical phenomena. For example, 
using the theory of elasticity, the Kirsch solution allows determination of the stresses 
and displacements around a circular excavation. A basic soil engineering example is 
calculating the total stress as the sum of the effective stress and pore water pressure. 
Models could also be considerably more complex mathematical descriptions of much 
larger engineering problems, e.g. a finite element model for caprock integrity 
assessment. In geomechanical engineering practice, reliable quantification of the 
modelling error arising in such complex models could be very challenging or even 
impossible due to our inability in obtaining sufficiently large number of measurements 
of the model output to be compared with model predictions.  It is noted that model 
calibration procedures could themselves involve other types of uncertainty, e.g., 
measurement error, transformation uncertainty and parameter uncertainty; these are 
usually neglected when quantifying the uncertainty in geotechnical models. 
 
Probabilistic models 
Model could also refer to statistical/probabilistic models, and thus model error 
(uncertainty) could result from selection of the form of the parametric probability density 
function (PDF) fY(Y; θf), or the functional form of the transformation equation TY(Y, X; 
θT), or the choice of which predictors X to include in the model. For example, one could 
choose among many distributions – say normal, lognormal, gamma, weibull, and student 
t-distribution – for statistical modelling of modulus of elasticity of intact rock. In case 
of transformed variables, one example from rock engineering is the numerous available 
choices of empirical equations relating modulus of elasticity E of intact rock and its UCS 
where some of them are linear and some non-linear; some include only UCS and E while 
others include various combinations of parameters such as unit weight of the rock, point 
load test, P-wave velocity, Schmidt hammer rebound values and void ratio (e.g., Feng 
and Jimenez, 2014). Another example is the diverse collection of empirical relationships 
for predicting undrained shear strength of soils from CPT and other soil engineering data 
(e.g., Paniagua et al., 2019). 
 
In a practical setting, when dealing with the above-described statistical model 
uncertainty, it is important to check the goodness-of-fit of individual models to the data. 
Note that this should ideally go beyond statistical tests that are based on null hypothesis 
testing (e.g. Anderson-Darling or Kolmogrov-Smirnov) designed to reject/fail-to-reject 
a hypothesized distribution type. In doing so, we suggest following Gelman et al. (2013) 
who recommended judging model flaws by their practical implications for the inference 
or prediction of interest. Another step is to consider multiple models with reasonable fits 
and compare their predictive accuracy. Then, either model selection or statistical model 
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averaging should be considered. Detailed discussions of model checking, comparison 
and selection are beyond the scope of this document and may be found in e.g. the seminal 
text by Gelman et al. (2013) or the overview provided by Bozorgzadeh and Bathurst 
(2019) with geotechnical applications in mind. It is nevertheless noted that, 
unfortunately, rigorous statistical model checking, model comparison, model selection 
and model averaging are not routinely performed for geotechnical applications. When 
dealing with statistical model uncertainty, it is common to not explore the model 
uncertainty associated with fY and select a distribution due to convenience or convention.  
 
Transformation uncertainty 
Empirical transformations are essentially regression models, and thus all the above-
mentioned probabilistic model uncertainties apply to them. In geotechnical literature 
however, the residual variation of the regression is referred to as transformation (or 
correlation) uncertainty. For example, when predicting E from Vp, Equation 2.4 gives 
the mean (i.e. best) prediction of E, and the residual standard deviation of the regression 
is considered to be the uncertainty in E arising from using this equation. Furthermore, it 
is noteworthy that the uncertainties in the parameters of the model (i.e. the regression 
coefficients) is typically ignored in current practice. Quantifying this uncertainty is 
crucial for updating generic empirical correlations with site-specific data using Bayesian 
techniques. Essentially, estimations (with uncertainty) of parameters of the empirical 
equation using generic data are used for specifying "prior" distributions in Bayesian 
analysis of site-specific data. For more details see Section 4.2.  
 
3.2.3 Other types of uncertainty 
 
Measurement error 
Measurement error refers to imprecisions associated with measuring variables of interest 
due to reasons such as limitations of equipment or operational conditions. Another 
related error is the between-equipment variation; that it, any systematic differences (on 
average) between measurements of the same quantity obtained by different equipment. 
 
Computational uncertainty 
There are also numerical approximation and computational errors. For instance, using 
finite difference for solving a differential equation, or errors arising from convergence 
tolerances in a finite element analysis. Monte Carlo error is another example of common 
computational errors. 
 
In the context of geotechnical engineering in general, and CO2 storage risk assessment 
in particular, the above measurement and computational uncertainties are expected to be 
negligible compared to the (aleatory) residual uncertainty in variables, (epistemic) 
statistical parameter uncertainty, and model uncertainty (including transformation 
uncertainty). 
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3.3 An illustrative example 
 
This section provides more context to the uncertainties discussed in section 3.2 by 
exploring the key steps involved in estimating static Young's modulus E from P-wave 
velocity Vp log data. Figure 3 gives a visual summary of the procedures and 
uncertainties; both direct and indirect measurements are considered.  
 
3.3.1 Indirect measurement 

Indirect measurement refers to the situation where semi-continuous Vp well log data are 
available. The 1D profile of Vp is typically obtained from a well log and exhibits 
variation with depth. In the schematic of Figure 3, this spatial variability is carried over 
to the next step of analysis and dealt with in a future step. 
 

 
Figure 3 Schematic overview of uncertainties involved in obtaining E from Vp. 

 
The Vp data are input to generic empirical transformations for obtaining E (e.g. Equation 
2.4). As mentioned earlier in section 3.2.2, unfortunately uncertainties arising from 
multiple regression models being available (i.e. multiple functional forms of the 
transformation, what predictors (independent variables) to include in the regression 
model, and what probability distribution to use for the residual error) are overlooked in 
engineering practice. In such situations, at least a brief engineering justification of 
applicability of the selected empirical equation should be presented. An alternative 
approach, especially where such the justifications are not compelling, is to apply other 
empirical equation(s) as sensitivity studies, with the aim of understanding the associated 
variation. 
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With a single transformation equation selected, two components of uncertainty should 
be considered. First is the parameter uncertainty associated with the coefficients of the 
generic empirical transformation equation. When incorporated correctly, this 
uncertainty translates to uncertainty in mean modulus of elasticity and is depicted as the 
shaded grey area in Figure 3. Moreover, quantifying this uncertainty is crucial for 
situations where site-specific measurements of E are available and it is intended to 
combine them with a generic correlation. Second, the residual variability associated with 
the empirical transformation equation should be considered. As mentioned in section 
3.2.2, this is generally referred to as transformation uncertainty in the geotechnical 
literature and quantifies the variability in E when predicted from a proxy predictor like 
Vp and can be used to obtain the quantiles of the distribution of E at each depth. 
 
As Figure 3 shows, the uncertain transformed E can be summarized with five profiles: 
mean, lower and upper bounds of the confidence interval for the mean (shaded grey area) 
and lower and upper quantiles of the probability distribution of E (dashed profiles). All 
such profiles exhibit variation with depth due to spatial variability of the regression input 
Vp. As will be discussed in section 4.3, each profile can be modelled as the sum of a 
deterministic trend component, a randomly fluctuating term and measurement error. As 
an example, Figure 3 shows a best fit (mean) linear trend and a lower quantile linear 
trend to the spatially variable lower quantile E. Note that the spatially variable lower 
quantile profile is influenced by the transformation uncertainty, and the lower linear 
quantile further includes the effect of spatial variation with depth. The variance required 
for calculating the former is the residual variance of the transformation equation and the 
variance required for obtaining the latter is usually estimated from a simplified 
procedure from random field theory as discussed in section 4.3.1. 
 
It is equally valid to perform the spatial analysis on the input Vp in the first step, i.e. 
obtain best fit and lower bound linear trends, and transform those into E. The illustrated 
procedure in Figure 3, however, gives a more comprehensive visual summary because 
the actual spatial variability of each of the five profiles can be shown alongside the 
simplified spatial model. 
 
3.3.2 Direct and indirect measurement 

Direct measurement of E refers to laboratory testing of rock specimens that are obtained 
from specific depths of a borehole at the site of the current project for which the 
corresponding in-situ Vp is also known. Therefore, the data consist of site-specific pairs 
of E and Vp. These data can be used in a Bayesian analysis (see section 4.2) to update 
the generic transformation to obtain quasi-site-specific profiles of E. As more site-
specific data become available, the transformation becomes more site-specific and less 
generic. 
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4 Methods for quantifying uncertainty involved in spatially-
averaged inputs  

 
The uncertainties stemming from sources discussed in section 3 should be quantified 
using probabilistic models and statistical data analysis techniques. To this end, this 
section briefly discusses statistical concepts and methods that are required for analysing 
a profile of geomechanical model inputs listed in section 2.   It should be noted that, for 
any of the discussed cases, there is a multitude of approaches and methodologies to be 
adopted and not all of them are discussed here. 
 
Section 4.1 introduces confidence intervals for the mean of a scalar random variable. 
Section 4.2 points out a number of frequently arising situations that call for more 
nuanced statistical approaches. Finally, section 4.3 discusses 1-dimensional spatially 
variable data. 
 
4.1 Confidence in estimated values 
 
It was discussed in section 3 that when statistical parameters (e.g., mean) are estimated 
from noisy and variable data (e.g., lab measurements of UCS), there will be uncertainty 
associated with them. In the classical or frequentist statistics framework this uncertainty 
is quantified using confidence intervals2. Confidence intervals have the general form 
 

point estimate ± critical statistics value × standard error (4.1) 
 
The critical statistics and standard error are related to the sampling distribution of the 
parameter that is being considered, e.g., a student t-distribution for the mean and a Chi-
squared distribution for the variance of a normally distributed random variable. The 
critical statistics value also depends on the selected target level of confidence. 
 
A 100(1-α) % confidence interval for the mean of random variable Y is 
 
 

𝑦𝑦� ± 𝑡𝑡�𝑑𝑑−1,α2�
× 𝑠𝑠

√𝑑𝑑
(4.2) 

 
Where 𝑦𝑦� is the estimated mean,  𝑡𝑡(𝑑𝑑−1,α/2) is the 100(1-α)-th quantile of a student t-
distribution with n-1 degrees of freedom, s is the sample standard deviation and n the 
sample size; 𝑠𝑠 √𝑛𝑛⁄  is the standard error, i.e. the standard deviation of the sampling 
distribution of the mean. For example, if n = 10 UCS measurements with mean 𝑦𝑦� =

 
2 Strictly speaking, this is incorrect. Confidence intervals quantify confidence in the procedure and not the parameter; they should be interpreted 
with respect to a hypothetical long-run sequence of repeated similar experiments. For instance, a 95% confidence interval does not imply that there 
is 95% probability that the parameter lies between the lower and upper bounds of the interval. Rather, it means that if we would have repeated the 
experiment many times and constructed a confidence interval from the data obtained in each experiment, then 95% of these confidence intervals 
would contain the true value of the parameter. However, it is common in practice to adopt the first (incorrect) interpretation for confidence intervals. 
This is sometimes justifiable by assuming that such confidence intervals are more-or-less the same as Bayesian credible intervals obtained with non-
informative priors. 
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 10.0 𝑀𝑀𝑀𝑀𝑀𝑀 and standard deviation s = 2.0 MPa, then the 95% confidence interval for the 
mean is calculated as  10.0 ± 2.26 × 2.0

√10
  , thus (8.57, 11.43).  It is clear from the above 

equation that obtaining more data (i.e. larger n) results in narrower confidence intervals, 
hence reduced uncertainty. 
 
A 100(1-α) % prediction interval (i.e. a likely range for a future observation) for a 
normally distributed random variable Y is 
 

𝑦𝑦� ± 𝑡𝑡�𝑑𝑑−1,α2�
× s �1 +

1
𝑛𝑛

(4.3) 

 
In the previous UCS tests example, assuming UCS is normally distributed, a 95% 
prediction interval for UCS is (5.69, 14.31) which is wider than the confidence interval 
for the mean (8.57, 11.43). The confidence interval includes uncertainties in determining 
the mean. The prediction interval covers data scatter or data variability around the mean 
in addition to uncertainties in determining mean. Thus, the prediction interval tends to 
be wider than a confidence interval.   
 
Analytical formulations of confidence and prediction intervals do not exist for all 
parameters and models, e.g. for non-linear regression models. One powerful alternative 
for such situations is bootstrapping which involves re-sampling with replacement from 
the original data to estimate the properties of an estimator. Exploring the bootstrap 
method is beyond the scope of this report. More information may be found in e.g., Efron 
(1992) and Efron and Tibshirani (1994). 
 
It is also possible to adopt a Bayesian framework instead of the classical (frequentist) 
statistics. Suitability of Bayesian methods for rock and soil engineering applications has 
been long recognized (see for example review papers Baecher (2017), Juang and Zhang 
(2017), and Zhang et al. (2017)), with a considerable increase in their usage in the past 
decade or so. The following section discusses some situations where Bayesian methods 
are particularly useful. 
 

 
4.2 Combining data and other sources of information 
 
There are many instances in soil and rock engineering projects where site-specific data 
are available. These data are usually limited in quantity and do not allow for fully site-
specific parameter estimations. Nevertheless, it is desirable to include these data in the 
statistical analyses, e.g. in conjunction with generic empirical correlations. Another 
example is information about in-situ stress data. Information could be available at 
different levels, e.g. qualitative descriptions by geologists, historical data, data from 
more recent adjacent projects, and expert engineering judgement. The Bayesian 
approach to statistics provides a framework for tackling such challenges. 
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4.2.1 A brief introduction to Bayesian statistics 
 
Bayesian statistics is not different from the classical (frequentist) statistical methods in 
the sense that the purpose of both is to make statistical inference. However, there is a 
fundamental theoretical difference between the two approaches. The frequentist 
methods treat observations (data) as random variables, and the unobservable quantities 
that one wishes to learn about (i.e. statistical parameters such as mean and standard 
deviation) as constant unknowns that are estimated from the data and accompanied by 
confidence intervals as a measure of reliability of these estimates. On the other hand, in 
Bayesian statistics probability models are applied to both the observations and the 
statistical parameters (Gelman et al., 2013). In other words, not only are the data treated 
as random variables but also the parameters of the statistical model are treated as such. 
 
Assume the intention is to learn about a set of (unobservable) statistical parameters θ 
(e.g. the mean and variance of a normal distribution) in terms of a probability model by 
obtaining some data y. A Bayesian model is constructed by defining a full joint 
probability model for all observable (y) and unobservable quantities (θ) 
 

f(θ, y) = f(θ) ∙ f(y|θ) (4.4) 
 
where f(θ) is known as the prior distribution and summarises – in the form of a 
probability density function – all of the available information about the parameter θ 
before observing the data y. f(y|θ) is known as the likelihood function, and is the 
probability distribution of the data assuming they arise from the model with parameters 
θ. Obtaining new data y provides further information about the parameter θ. 
Consequently, the prior distribution f(θ) must be updated to account for the newly 
available data. To do so, the right-hand side of equation 4.4 could be rewritten to include 
the new known values of y – that is 
 

f(θ, y) = f(𝑦𝑦) ∙ f(θ|y) (4.5) 
 
Combining equations 4.4 and 4.5 and rearranging gives the Bayes’ theorem 
 

f(θ|y) =
f(θ) ∙ f(y|θ)

f(y)
(4.6) 

 
The term f(θ|y) is known as the posterior distribution and reads as ‘the probability 
distribution of θ given y’. f(θ|y) reflects the updated state of knowledge about θ after 
observing the data y. The f(y) term is a constant, as it only depends on the known values 
of data and ensures that the posterior distribution integrates to unity as required by the 
axioms of probability. One of the features of the Bayesian approach is that it allows 
common-sense interpretations of statistical conclusions. For instance, a Bayesian 
credible region or credible interval can be directly interpreted as containing an unknown 
parameter with a specified probability, in contrast to frequentist confidence intervals that 
must be strictly interpreted in relation to a sequence of similar inferences that might be 
made in repeated practice, as discussed in section 4.1. 
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Prior distributions 
Another distinctive feature of the Bayesian approach is the requirement to specify the 
prior distribution f(θ). This allows other type of relevant information, e.g., historical 
data, engineering judgement, and regional information to be introduced into the analysis 
for a specific project/site. For example, the posterior distribution from one analysis can 
be used, directly or modified by an expert, as a prior distribution for a subsequent 
analysis. This feature of the Bayesian framework can be used in soil and rock 
engineering to augment project-specific data logically with related available information 
from elsewhere. 
 
Prior distributions that are based on sources of information other than current data are 
known as informative prior distributions, and through application of equation 4.6 they 
strongly influence the posterior f(θ|y). On the other hand, vague (also known as non-
informative) priors are those that convey little knowledge, have minimal influence on 
the posterior and allow the data to dominate the posterior distributions. Thus, vague 
priors result in inferences and predictions similar to those obtained from frequentist 
(classical) models, in which there is no possibility of using prior information. Loosely 
speaking, vague priors can be defined using flat probability distributions (i.e. no distinct 
peak to the probability density function) – for example, a uniform distribution or a 
normal distribution with a very large variance (relative to the range of the data) – but 
they must be selected considering the physical or mathematical limitations of the 
parameters of the model. For instance, compressive strength of rock is physically 
restricted to be positive, and variance is positive by definition.  
 
Specifying informative or weakly informative prior distributions is neither an automatic 
nor a straightforward task (Lunn et al., 2012). If expert judgment is to be used, a series 
of techniques generally known as "expert elicitation" should be followed. In simple 
terms, expert elicitation guidelines provide a framework for expressing expert 
knowledge in a probabilistic format while guarding against known cognitive biases and 
heuristics (e.g., O’Hagan et al., 2006). 
 
Another suggestion for specifying prior distributions in the geotechnical literature is 
using uniform prior distributions over typical ranges of the parameter of interest reported 
in the literature (e.g., Cao et al., 2016). This approach usually results in priors that are 
very wide relative to the limited site-specific data and thus not really informative. 
 
However, if data from multiple sources (other than project-specific data) are considered, 
then hierarchical Bayesian models could be used for formulating informative prior 
distributions. Although hierarchical modelling has a long history in the Bayesian 
statistics literature, they have only recently been considered seriously for geotechnical 
applications. Using strength of intact rock as an example, Bozorgzadeh et al. (2019) 
discuss how informative priors can be constructed from relevant historical data. Ching 
and Phoon (2019) and Ching et al. (2022) are recent examples of application of 
hierarchical models for predicting soil engineering parameters from empirical 
relationships based on Cone Penetrate Test (CPT) data. Bozorgzadeh and Bathurst 
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(2020) discuss similar procedures for updating site-specific model uncertainty using 
mechanically stabilized earth walls as an example. 
 
No matter what source of information, there is always subjectivity involved in specifying 
informative priors and thus transparency is key in communicating them. It is important 
to document any selected and left-out data, the reasoning and assumptions, and 
elicitation procedures. 
 
More details on mathematical issues, and discussions on practical considerations for 
selecting prior distributions, may be found in key texts, e.g. Lunn et al. (2012) and 
Gelman et al. (2013). 
 
Bayesian computation 
Analytically tractable posterior distribution calculations (i.e. the right-hand side of 
Equation 4.6 simplifies to a known parametric distribution) only exist for a limited 
number of simple Bayesian models, most of which involve cases where the prior 
distributions for the parameters of the likelihood give posterior distributions of the same 
family as the prior distributions. Such a prior is said to be conjugate for the likelihood 
function. For example, the normal and gamma distributions are conjugate priors for the 
mean and precision (reciprocal of variance) of the normal likelihood, respectively. 
 
The concept of conjugacy is mostly of theoretical and historical importance and not 
particularly relevant in modern practical Bayesian data analysis. Modern Bayesian 
model fitting is dominantly performed using a class of sampling algorithms known as 
Markov chain Monte Carlo (MCMC). Probabilistic programming languages and 
software such as Stan (Stan Development Team, 2022) are widely used for this purpose. 

 
4.3 1-D trend data 
 
Spatial variability is not another type of uncertainty like parameter and model 
uncertainties, but rather a challenge that calls for a special class of statistical models, 
and thus there is merit in discussing it in more detail. Properties of geo-material vary 
from one point in space to another. This is usually referred to as spatial variability. 
Furthermore, these properties exhibit strong spatial correlations both vertically and 
horizontally. In other words, and informally, the points closer to each other show more 
similarity in properties. Spatial variability of geo-material is usually modelled using 
methods such as random fields, time series data analysis techniques, or kriging. These 
methods are relatively involved and difficult to employ in a practical setting. The 
following discusses a simplified approach from random fields for dealing with 1-D 
vertical spatial variability. 
 
Consider a CPT profile or sonic log Vp measurements that show variation with depth 
(e.g. see Figure 3). This spatial variability, ε(z), can be modelled as the sum of a 
deterministic trend component, t(z), a randomly fluctuating term w(z) and measurement 
error e(z) (Baecher, 1985; Nadim, 1988; Phoon and Kulhawy, 1999): 
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𝜀𝜀(𝑧𝑧) =  𝑡𝑡(𝑧𝑧) + 𝑤𝑤(𝑧𝑧) + 𝑒𝑒(𝑧𝑧) (4.7) 
 
The mean u and standard deviation σ for the property can be determined as follows: 
 

𝑢𝑢𝜀𝜀 =  𝑡𝑡(𝑧𝑧) (4.8) 
 

𝜎𝜎𝜀𝜀2 =  𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑒𝑒2 (4.9) 
 
Therefore, the coefficient of variation (COV) of ε(z), defined as σε/ uε, is given by 
 

𝑈𝑈𝐶𝐶𝑉𝑉𝜀𝜀2 =  𝑈𝑈𝐶𝐶𝑉𝑉𝑤𝑤2 + 𝑈𝑈𝐶𝐶𝑉𝑉𝑒𝑒2 (4.10) 
 
The residuals of the trend w(z) tend to exhibit remaining spatial correlation. Spatial 
averaging is a concept with which spatial variability is averaged to approximate a 
random variable that represents a spatially varying parameter (Vanmarcke, 1977). In 
random field theory, the spatial variability of a parameter can be described statistically 
by the mean, variance, and the scale of fluctuation, δ (Vanmarcke, 1977). The scale of 
fluctuation defines the distance over which there is a significant correlation of property 
values. While the mean and variance (or standard deviation) are easily obtained using 
equations from statistics, the scale of fluctuation has specific data requirements and, 
generally, its evaluation requires more complex analyses. 
 
The main requirement for evaluating the scale of fluctuation is the stationarity of data. 
Data are stationary if they satisfy the following conditions: (a) the mean is constant with 
distance (that is, no trend exists in the data); (b) the variance is constant with distance; 
and (c) there are no irregular fluctuations. Vanmarcke (1983) suggested that the scale of 
fluctuation be defined as twice the area under the autocorrelation function of the 
stationary random variable (see Figure 4): 
 

Scale of fluctuation δ =  2� 𝜌𝜌(𝜏𝜏)𝑑𝑑𝜏𝜏
∞

0
(4.11) 

where ρ is the autocorrelation function of the random process. 
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Figure 4 Derivation of scale of fluctuation from the autocorrelation function 

(Vanmarcke, 1983). 
 
 
A variance reduction factor Γ is derived in terms of a scale of fluctuation δ and an 
averaging distance L. The scale of fluctuation, sometimes called correlation length 
within the framework of the random field, defines the distances over which there is a 
significant correlation of the geotechnical parameter in question. Small and large scales 
of fluctuation define rough and smooth random fields, respectively. In the limits, a scale 
of fluctuation of zero indicates no spatial correlation (infinitely rough field, white noise) 
while a scale of fluctuation of infinity indicates a completely uniform field. The 
averaging distance is defined as the interval over which the parameter of interest is 
averaged. 
 
The following approximate variance reduction function was proposed by (Vanmarcke, 
1983) for practical applications: 
 

Γ2(𝐿𝐿) =  �
1       𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿 =  𝛿𝛿𝑣𝑣
𝛿𝛿𝑣𝑣
𝐿𝐿

     𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿 >  𝛿𝛿𝑣𝑣
(4.12) 

 
where δv is the scale of fluctuation in the vertical direction. 
 
Fenton and Griffiths (2008) suggested the following approximation for Γ, which is more 
accurate for small values of L: 
 

Γ2(𝐿𝐿) ≈ 
δ

δ +  L
(4.13) 

 
There are various statistical techniques available in the geotechnical literature for the 
estimation of scale of fluctuation. Several studies have reported values of scale of 
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fluctuation for soil properties, using either geostatistics (DeGroot and Baecher, 1993; 
Keaveny et al., 1990; Lacasse and Nadim, 1996), or random field modelling (Dasaka 
and Zhang, 2012; Fenton, 1999). For practical applications, Vanmarcke (1997) proposed 
an approximate relationship between the scale of fluctuation, δv, and average distance, 
�̅�𝑑, between intersections of the fluctuating property and its trend function, as shown in 
Figure 5. This simplified random field approach can be adopted to estimate the spatial 
correlation structure in the vertical direction in e.g. in Vp and Vs profiles. 
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Figure 5 Estimation of vertical scale of fluctuation (after Vanmarcke, 1977). 

 
The Vp logs can sometimes be divided into layers. To maintain the required stationarity 
assumption when using random fields, a trend is generally removed from the data for 
each and the detrended data (i.e. fluctuating component) are considered to be a zero 
mean stationary process (Liu et al., 2015). The variance of the spatial average, σ2

Vp,a, 
and the spatial averaged COV of Vp are then given by: 
 

𝜎𝜎𝑉𝑉𝑝𝑝,𝑎𝑎
2 =  Γ2(𝐿𝐿)𝜎𝜎𝑤𝑤2 + 𝜎𝜎𝑒𝑒2 (4.14) 

   
𝑈𝑈𝐶𝐶𝑉𝑉𝑉𝑉𝑝𝑝,𝑎𝑎

2 =  Γ2(𝐿𝐿)𝑈𝑈𝐶𝐶𝑉𝑉𝑤𝑤2 + 𝑈𝑈𝐶𝐶𝑉𝑉𝑒𝑒2 (4.15) 
 
A critical question when dealing with spatial data and models is if engineering behaviour 
depends on the properties of an isolated weak zone or the average property value within 
the ground volume being considered. A widely used example of this from soil 
engineering is the axial capacity of piles (e.g. Bond and Harris, 2008; Orr, 2000). The 
shaft friction resistance of a pile is influenced by a large volume of ground along the 
length of the pile, and thus governed by average soil strength. On the other hand, the end 
bearing influences an isolated zone below and in the vicinity of the pile tip, and thus the 
possibility of that locality being weak should be considered. The distinction further 
dictates if the quantity of interest should be chosen as the basic random variable or as its 
average. Although not common practice, it is important to provided similar reasoning 
and arguments when dealing with spatially variable data in rock engineering problems. 
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In other words, it is particularly important to establish if the above-mentioned variance 
reduction due to spatial averaging is relevant for the problem at hand (Cami et al., 2020). 

 
4.4 3-D spatial data 
 
Finally, a challenging and less-studied problem is that of 3D spatially variable data in 
soil and rock engineering where the spatial data are horizontally sparse (large distance 
between CPTs or boreholes). A discussion of this topic is beyond the scope of this 
document. See e.g. Ching et al. (2021, 2020) as examples of recent developments in 
analysing CPT data.  
 

5 Field application 
 
This chapter briefly demonstrates how to quantify spatial variability involved in depth-
averaged parameters using the statistical methods described in Section 4 and data from 
EOS well 31/5-7 in the North Sea.  
 
5.1 Data examples from the EOS well 31/5-7 in the North Sea 
5.1.1 In-situ stress conditions 

Example of P-wave velocity log and the stress data from EOS Well 31/5-7 and the stress 
data from EOS Well 31/5-7 are shown in Figure 6. The example shows minimum 
horizontal stress estimated from XLOT fracture closure stress, including two 
interpretations with stress gradients of 1.43 sg (specific gravity) and 1.55 sg. The XLOT 
data in the Drake formations are considered to be of high quality. A regional trendline 
from XLOT data and LOP data in Horda platform area is also included in the Figure 6. 
The in-situ stress conditions are summarized in Table 1 based on data from Thompson 
et al. (2022) and a published Eos well 31/5-7 data by Equinor (Meneguolo et al., 2021). 
The range of values, mean value and uncertainties are indicated in Table 1. It is noted 
that the variation described in Table 1 is from the interpretation by the Thompson et al., 
(2022), not from the methods described in Section 4. 
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Figure 6 a) P-wave velocity profile for EOS well 31/5-7 (left), and b) Minimum horizontal 
stress from XLOT test and sonic log method for EOS well 31/5-7 (right). Depth profile indicating 
base interpretation stress gradients 1.43sg and alternative high value of 1.55 sg, and reginal 
XLOT trend for Horda platform (data from Thompson, et.al. 2022). 
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Table 1 Example of stress estimation for Drake cap rock in the Aurora field. Mean values are at 
depth of XLOT and within Drake. The variation and uncertainties are roughly judged from 
correlation lines and the spread in data in Figure 6. 

Parameter Method Range 

(MPa) 

Mean 

(MPa) 

% 
variation 
(+/-) 
around 
mean 

Comments 

Vertical stress Density log 49.6-52.3 51.2 low Not quantified. Normally low, however, 
depends on log coverage 

Global trend 55.4-60.6 58 5% Trend for Norwegian Continental Shelf 
based on Andrews et.al 2016 

Minimum 
horizontal 
stress 

XLOT 36.2  

(40 MPa) 

36.2 1% Normally <0.5MPa error for high quality 
XLOT data. Alternative interpretation 
1.55sg= 40MPa is 11% higher 

Sonic log 34-40 37 9% Reflects vertical variations 

LOP 36.2-40.5 39 4-7% Reported LOP value NPD. Closure 
pressure and FBP in XLOT used as lower 
and upper limit respectively. 

Horda XLOT 37-39 38 8% Trend from Thompson et. al. 2022 

Horda LOP 38.5-40.5 39 20%  

Lateral 
variations sonic 
logs 

32-43 37.6 14% Lateral variations based on 17 logs. S-wave 
was calculated based on Machine Learning 
Technique 

Pore pressure RPM 25.5-26.8 26.1 Low Assumed Hydrostatic. No measurements in 
shale.  

Maximum 
horizontal 
stress 

Backcalculated 
value 

36.2-39.8 36.6 Medium SH/Sh=1.05 is normal assumption. SH/Sh= 
1.01, 1.05 an 1.1 back calculated Thomson 
et al 2022.  

Maximum 
Stress 
orientation 

FMI 83-89  87 Low Based on EOS well induced fractures 

FMI and BO 35-177  89.9 19 Equinor database 

FMI , BO, FMS 13-160 92.8 25.2 World Stress Map 2016 

 

From Table 1, it is clear the uncertainties vary depending on the methods used (LOP, 
XLOT, log based method) and the dataset available (local vs. regional trends of XLOT 
and LOT), and whether accounting for detailed variation of stress with depth or laterally. 
When using regional trends, effects of pore pressure, well inclination, operational effect, 
lithology and geological history can give increased uncertainties in the trends. Maximum 
horizontal stress σH is often uncertain due to lack of method for direct measurement, but 
generally σH is assumed to be close to σh in the North Sea (σH/σh < 1.05). Stress path 
during injection will depend on material properties, pore pressure and temperature 
changes. 
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5.1.2 Elastic properties 
 
Example of elastic properties of Drake sealing shale formation derived from p-wave 
velocity log from EOS well 31/5-7 is shown in Figure 7, along with histogram of the 
dynamic Poisson's ratio derived from sonic logs strength and histogram of Young's 
modulus from Horsrud correlation (Horsrud, 2001), which is expressed in Equation 2.4. 
A regional trend of dynamic Young's modulus and Poisson's ratio for the Drake 
formation from 17 wells compared with data from the EOS well is shown in Figure 7d, 
showing also lateral variations in the elastic properties.  

 
 

Figure 7 Youngs modulus vs. depth for Drake sealing formation in EOS well 31/5-7, showing 
static undrained Young's modulus from Horsrud empirical correlation and dynamic Youngs's 
modulus from sonic log data. b) Histogram of dynamic undrained Poisson's ratio c) Histogram 
of undrained Young's modulus in MPa from Horsrud correlation. Note for Histograms: x-axis is 
the horizontal stress value, and y-axis indicates the number of logged values in Drake d) Lateral 
variation in Dynamic Young's modulus (E) and Poisson's ratio (ѵ) form Drake formation from a 
range of Wells around EOS (Mondol et al., 2022) 
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5.2 Example calculation for Young's modulus profile 
 
This section demonstrates an example of obtaining a lower quantile linear trend of 
profile of Young's modulus derived from Vp data illustrated in Figure 6. Transformation 
uncertainty and spatial variability of the 1D profile are considered. For the former, this 
example uses only information reported by Horsrud (2001) and no additional statistical 
analyses are performed. Shortcomings arising from solely relying on information 
reported in the literature will be discussed.  
 
5.2.1 Transformation uncertainty 
 
By applying Equation 2.4, the Vp profile of Figure 6a can be transformed into a best 
estimate or mean profile of Young's modulus E. This is shown as the grey solid line 
profile in Figure 8. Also shown are layer-specific mean linear trends obtained from 
simple linear regression. As discussed previously, a statistically rigorous calculation of 
a lower quantile of interest requires constructing a prediction interval for E. 
Unfortunately, this is not possible with the available information. Horsrud (2001) reports 
the point estimates (best fit values) of the regression parameters and a residual standard 
deviation of σtr = 0.4 GPa. Missing are a more detailed description of the regression 
model and its assumptions (e.g. distribution type of the error), sample size, and the 
variance-covariance matrix of the parameters. In absence of these required information, 
it is not possible to quantify the uncertainty in mean E and in turn its contribution to 
predictions of E. 

 
Here, a rough estimation of a spatially variable lower profile E  is obtained by subtracting 
two3 times the residual standard deviation of the transformation (i.e., 2 × 0.4 = 0.8) from 
the mean profile. The resulting profile is shown as dashed grey; the dashed blue line is 
the corresponding linear trend. It should be noted that it is not possible to say what 
quantile exactly such lower bounds are because of missing details about the regression 
model, i.e. error distribution type, number of data points, mean of Vp data used in the 
regression, and variance-covariance of the parameters. 
 
As mentioned earlier, the above calculations provide a lower trendline for these data. A 
sound statistical quantification, however, should account for uncertainty in the 
parameters of the transformation as well as the number of observations used for fitting 
the regression model. Furthermore, if it is desired to update such generic transformations 
with site-specific measurements of E, quantification of the parameter uncertainty in the 
regression analysis is absolutely necessary. In other words, it is not possible to perform 
a Bayesian updating with the information provided by Horsrud (2001). The 
straightforward solution to this problem is to obtain the database used for fitting the 
regression model, refit the regression model and extract the necessary information. It is 
emphasized that the above criticism are not a reflection on the research presented by 

 
3 Note that the 95% probability interval for the standard normal distribution is (−1.96, 1.96). 
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Horsrud (2001). Rather, they are merely an example of typical reporting of regression 
results in many soil and rock engineering publications. With increasing interest in 
quantitative uncertainty quantification, this should be done more carefully taken into 
account explicitly. 
 
 

 

Figure 8  Profiles and conservative estimates of Young's modulus vs. depth for Drake 
formation EOS well 31/5-7, showing strength from Horsrud (2001) empirical correlation. 

 
5.2.2 Spatial variability 
 
The next step is to consider the spatial variability exhibited by the profiles. Table 2 
summarizes layer-specific estimated scales of fluctuation and variance reduction factors 
obtained using the approach described in Figure 4. For each layer, the dashed green lines 
in Figure 8 are obtained by subtracting two (spatial) standard deviations from the mean 
trend line. 
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Table 2 Variance reduction factor for spatially averaged E 
Layer Thickness 

(m) 
𝜎𝜎𝑤𝑤2  𝛿𝛿𝑣𝑣 

(m) 
Γ2(𝐿𝐿) Γ2(𝐿𝐿)𝜎𝜎𝑤𝑤2  

Drake 2 52.88 0.73 0.98 0.019 0.0136 
Drake 1 upper 21.80 0.30 1.11 0.051 0.0151 
Intra Drake 24.84 0.35 1.80 0.072 0.0256 
Drake 1 lower 27.90 0.24 0.88 0.032 0.0077 

 
 
5.2.3 Total variation 
 
The total variance for each layer is calculated as the sum of the two variance 
components. For example, for the Drake 2 layer, the variance of the transformation is 
0.42 = 0.16 and the variance of the spatially averaged linear trend is 0.0136. The total 
variance and standard deviation are 0.1736 and 0.42, respectively. The dashed red lines 
in Figure 8 represent linear trends obtained by subtracting two times total standard 
deviation from the mean trend line. It is noted that the transformation variance is 
dominant in this illustration. Finally, it is emphasized that the above analysis is valid for 
situations where it is reasonable to assume that the measurements involve spatial 
averaging, and thus detailed differences in the spatially varying field are averaged out, 
and the variance of the averaged field is smaller than that of the original field. This seems 
to be a reasonable assumption for large-scale engineering analyses that require an 
estimate of modulus of elasticity of sedimentary rock layers that are few metres to few 
tens of metres thick.  

 
6 Summary and recommendations 

This report introduced methods for uncertainty quantification that can be involved in 
geomechanical properties estimation, especially for depth-profile indirectly estimated 
from acoustic wave velocities. The main findings from this report can be summarized as 
follows: 

• According to section 2 on the estimation methods for a depth profile, indirect 
estimation of rock mechanical properties and in-situ stress condition using well-
log or petrophysical information are mainly based on empirical correlations from 
field/laboratory measurements and/or simplified physical understandings. Thus, 
the estimations can naturally involve an uncertainty caused by its simplification 
and lack of physical understanding in the empirical correlation.   

• Section 3 introduced various type of uncertainties, including philosophically-
oriented epistemic/aleatory classification of uncertainties and application-
oriented classification. When the depth-averaged geomechanical properties are 
estimated from a well-log or petrophysical information, the estimation can 
involve following uncertainties: 
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o Statistical parameter uncertainty, which can be associated with limited 
number of observation or field measurements;   

o Model uncertainty, which can be associated with imperfection of a 
physical model – which transform well-log information to rock 
mechanical inputs – and a probabilistic model which is related to a form 
of the statistical parametric distribution and regression model; 

o Spatial variability, which is related to nature randomness varying from 
one point in space to another; and 

o Observation (measurement) error, which is related to imprecisions 
associated with measurements such as limitations of equipment or 
operational conditions. 

• Section 4 introduced a few quantification methods for uncertainties listed in 
section 3. As a method to quantify statistical parameter uncertainties, a 
confidence and prediction interval is introduced. Then, the concept of Bayesian 
approach is introduced as a means of quantifying model uncertainties. For 
quantification of spatial variability, a simplified approach using random fields is 
presented. 

• Finally, in section 5, the uncertainty procedure described in sections 3 and 4 was 
demonstrated using data from the North Sea. 

As addressed in this report, statistical modelling is a helpful tool to estimate reliable 
ranges of geomechanical input that can cover an area of interest. Also, it can be useful 
to determine likelihoods of the data's upper and lower limits using a systemic approach 
without an engineering judgement.  In spite of its usefulness, the statistical approaches 
have been less highlighted in geomechanics for CO2 storage. It should be kept in mind 
that this report addressed only basic approaches for uncertainty quantification with 
simplified assumptions. In reality, the uncertainties listed in section 3 are closely linked 
and sometimes difficult to separate as independent components. Thus, it is 
recommended to adopt more advanced methods (e.g., Bayesian approaches) for 
quantification of uncertainty in estimated rock mechanical properties.  
   
The feasibility of the methods described in this report will be investigated with WP1 of 
the SHARP project, which is related to the in-situ stress modelling and interpretation, 
and potentially reported in the D5.4 deliverable.  
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