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Executive summary
This report provides a review of the application of arti�cial intelligence (AI), machine learning (ML),

and deep learning (DL) techniques to earthquake detection. We start by reviewing the conventional

methods for earthquake detection. We then review the fundamental concepts behind arti�cial intelli-

gence, machine learning, and deep learning. We then describe how these new techniques are being

employed in earthquake detection, and explain how the current deep learning architectures andmod-

els are being applied. We conclude with a discussion on how ML and DL methods can be e�ectively

applied to geological CO2 storage monitoring.

The report will present an overview of the existing landscape but also summarise the current chal-

lenges and future directions of machine learning in its application to earthquake detection. By ad-

dressing the opportunities and limitations, this report aims to contribute to a deeper understanding

of this oft-invoked �eld, and how these methods could improve earthquake detection and potentially

o�er innovative solutions in CO2 storage applications.

AI, and more speci�cally ML, have a wide variety of applications, and o�er the ability to automate

algorithms and computational processes that can otherwise be time consuming and labor-intensive.

Earthquake detection is a clear example of one such process. Accurate and reliable routines for de-

tecting earthquake arrivals from continuous waveform data are essential for all seismological anal-

yses. Thus, �nding methods to improve the detection capability for events is key to improving our

understanding of the subsurface that stems from the analysis of earthquakes.

Many ML models have been developed for earthquake detection and location. Each are trained on

large datasets from speci�c regions, and thus have ingrained biases for the features of the under-

lying training data. Generally speaking, ML-based detection capability for a speci�c purpose can be

improved by tuning the larger models using transfer learning, where themodel is additionally trained

on data from that speci�c network (with its own geometry, noise pro�le, event types, etc).

The performance of models can vary signi�cantly. This is often considered to be due to features (net-

work geometry, sensor type, station site conditions, event magnitudes, event distances, faulting style,

etc) of the underlying data used to train the model. One clear drawback in the use of ML models, par-

ticularly for DL architectures, is their opacity with respect to feature extraction – it is often impossible

to determine exactly what an ML model is identifying in the data. However, there are architectures

which are less opaque, and can enable something approaching an understanding of the underlying

features the ML algorithm is “seeing” in waveform data.

Many activities within the SHARP project could be enhanced through ML techniques. The earthquake

catalogue data could naturally be enhanced through better detection methods, �nding smaller and a

more diverse range of events. ML �lteringmethods of the waveform data could be applied to improve

signal quality determination and quality control methods for processing in work�ows such as focal

mechanism inversion or stress drop measurement. Whilst this report focuses on earthquake detec-

tion, other ML-based techniques are discussed. For example, image recognition methods could be

employed to detect site ampli�cation e�ects, which are key to accurately assessing ground motions

and seismic hazard.
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1 Introduction
1.1 Earthquake detection

Earthquake detection is a critical aspect of seismology and geophysics [Yoon et al., 2015]. It aims at

identifying the occurrence of seismic events that occur beneath the Earth’s surface. It involves the

use of various ground motions sensors, such as seismometers, accelerometers, geophones, or �bre

optic distributed acoustic sensing (DAS) cables to record vibrations caused by seismic sources. These

recorded data can then be analysed to determine the location, depth, magnitude, and source prop-

erties of earthquakes. The process of earthquake detection typically begins with the collection of

continuous seismic waveform data – showing the groundmotion through time in one to three dimen-

sions – from a network of seismic stations, which are then subjected to various signal processing and

analysis techniques.

Accurate and reliable earthquake detection can be broken down into manual or automated methods.

Manual picking involves experts reviewing seismograms to identify seismic events, while automatic

detection uses various numerical or statistical techniques to identify signals of earthquake arrivals

in continuous waveform data. A combination of the two are generally employed to ensure a robust

earthquakemonitoring system, where automatic pick times are reviewed by seismologists to improve

their accuracy. Obtaining accurate estimates for the initiation time of detected seismic phases is a

crucial �rst step in any seismological analysis [Leonard, 2000].

Manual picking of seismic events is an important and intricate process in seismology. Generally, expe-

rience is needed to identify the seismic phases correctly and to pick onset times accurately and consis-

tently [Küperkoch et al., 2012]. Before the proliferation of computational methods, detailed studies of

seismicity were built upon the foundation of manual picking. However, this is a time-consuming task

[Baer and Kradolfer, 1987] and as the demand for real-time early warning systems and the analysis

of larger data sets became more common, there has become an increasing reliance on automatic

picking methods [Álvarez et al., 2013].

Numerous triggering algorithms can be employed to detect the onset of seismic arrivals in continuous

data. These algorithms are generally based on the statistical characteristics of the signal in the time

or frequency domain [Allen, 1978, 1982, Murdock and Hutt, 1983].
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Figure 1: An example of short-term average (STA) and long-term average (LTA) with trigger on and o�.

The seismic waveform is recorded by station A01E near Aluto volcano in the Main Ethiopian

Rift. The seismic event occurred on April 21, 2012, at 06:40:10 UTC. This waveform data is

band-pass �ltered between 2 Hz and 15 Hz. The upper plot shows the �ltered waveform,

highlighting the identi�ed P-wave (red) and S-wave (blue) onsets. The lower subplot depicts

the characteristic function (STA/LTA ratio), calculated using an STA window of 1.5 seconds

and an LTA window of 10 seconds. The red dashed line in the bottom subplot represents

the trigger-on at a threshold of 4.0, and the blue dashed line represents the trigger-o� at

a threshold at 2.2. These thresholds signify when the short-term variations signi�cantly

exceed the long-term trends.

The simplest of these rely on an amplitude threshold trigger, whereby a detection ismadewhen some

quantity based on the amplitude of the seismic signal surpasses a set threshold. A widely adopted

algorithm in weak-motion seismology is the “short-time-average long-time-average trigger” (STA/LTA)

[Trnkoczy, 2009]. This algorithm continually computes the absolute amplitude averages in short and

long time windows, and triggers when their ratio surpasses a prede�ned threshold [Yoon et al., 2015].

This is depicted in Figure 1. Many trigger algorithms exist, including Joswig [1990], Joswig and Schulte-

Theis [1993], and Joswig [1995]. In addition to the STA/LTA, there are other earthquake detection

methods that are frequently used like template matching, auto-correlation, coalescence and migra-

tion.
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Templatematching (TM) involves comparing incoming seismic data to prede�ned templates of known

seismic signals, as showed in Figure 2. This template waveforms are found usingmore basic detection

methods, such as manual picking or STA/LTA. When best applied, a large variety of templates are

used, re�ecting the broad range of earthquake properties, e.g., magnitudes, source types, locations,

etc. When a match is identi�ed, it serves as an indicator of the presence of an earthquake. It relies

on the computation of the normalised cross-correlation coe�cient (NCC) between a set of chosen

template waveforms and the continuous waveform recordings from seismic instruments [Gibbons

and Ringdal, 2006, Mu et al., 2017, Yoon et al., 2015].

Figure 2: Multi-station detection of earthquake swarms employing multiple templates. The seismic

dataset captures the initial 12 hours of a 2012 Aluto volcano earthquake event in the Main

Ethiopian Rift. The seismic stream is high-pass �ltered Z component. Extracted from the

earthquake catalogue are the origin times and magnitudes of two primary earthquakes

within this time-frame. Displayed in the left �gure is a template waveform representing

these earthquakes. Following this, cross-correlations are computed, aiding in the identi�ca-

tion of additional similar earthquakes with cross-correlation at all stations.

Auto-correlation is a “many-to-many” search – referring to the process of systematically comparing a

large number of waveforms with each other – for similar waveforms when the desired signal is not

known in advance [Brown et al., 2008, Yoon et al., 2015]. The correlation between seismic waveforms

from di�erent monitoring stations is used to estimate the time delay and source location of seismic

events, between stations. This can then be used to identify the onset of earthquakes detected by the

stations in the network.

In addition to template matching and auto-correlation, migration methods can be employed for de-

tecting and locating seismic events [Chambers et al., 2010, Langet et al., 2014]. Coalescence micro-

seismicmapping (CMM) is one suchmethod for both simultaneously detecting and locating seismicity

[Drew et al., 2013, Winder et al., 2022]. In this approach a travel time look-up table (LUT) is established

by forward modeling seismic arrival times from a de�ned grid to all receiver stations, using a input

velocity model. This process is undertaken only once for a speci�c search volume and velocity model

to accelerate the subsequent migration of signals. Travel time LUTs are generally created for both
6
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P and S waves, and sometimes other re�ected phases. Waveforms are then fed into the algorithm,

with energy from the three components being migrated back to each grid point in the LUT to form

onset functions for each time step. Thresholds in the magnitude of the onset function are then used

to measure the phase arrival times, from which a preliminary location is computed. This location will

be the point in the LUT with the highest coalescence value.

1.2 Challenges of conventional earthquake detection

Precisely establishing the arrival times of seismic P- and S-waves is a crucial stage in determining

earthquake epicenters, magnitudes, and depths [Pardo et al., 2019]. However, manual picking is

time consuming and many existing algorithms often fall short in terms of automation, distinguishing

between multiple phases, and ensuring accuracy in performance [Cano et al., 2021].

The performance of STA/LTA can be hampered by various factors: low signal-to-noise ratio (SNR);

emergent signals; complex waveforms; overlapping events; cultural noise; or sparse station spacing.

Each of these results in a lower sensitivity for detecting earthquakes. This manifests as a fundamental

limit in the size of earthquake that can be detected, as smaller or more distant events will naturally

have a lower amplitude signal on a given seismic station. This limit is often termed the magnitude of

completeness for a given station, array, or network of seismometers.

Template matching also has fundamental limitations since it relies on known waveform templates,

making it less versatile for detecting sources that have not been seen before (e.g., from a di�erent

location or of a di�erent faulting style). Functionally, TM will only �nd events with similar source

characteristics to those already detected. Typically, templates are chosen from existing earthquake

waveform data, which can naturally lead to biases in the resulting earthquake catalogue to similar

event types.

The application of auto-correlation can sometimes have a similar limitations. Due to this method

being computationally expensive, often smaller windows of data are used to compare to the larger

datasets, biasing detections to a speci�c period. Auto-correlation can also generate many detections

from noise sources that are recorded across arrays, meaning genuine earthquake detections have to

be �ltered out. This requires extra processing steps in the work�ow. These e�ects naturally introduce

limitations to the application of the above methods for earthquake detection for large continuous

datasets [Yoon et al., 2015].

CMM is also somewhat computationally intensive, with travel-time look up tables needing to be cre-

ated for a potentially large grid volume. This becomes a challenge formonitoring large spatial areas. It

also requires relatively well constrained velocity models, also a challenge for large areas, to accurately

pick and associate P and S times from the same events. As above, coherent noise sources would also

be highlighted CCM detection routines, requiring further �ltering and quality control to isolate. If the

frequencies of the noise sources is not su�ciently distinct to the target earthquake signals, this can

introduce many false detections into CMM-derived catalogues.

These challenges in conventional earthquake detection motivated the development of more compu-

tationally e�cient methods that are less a�ected by noise and internal biases. Machine learning and

deep learning methods employ many transformations and convolutions to input data, meaning they
7
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may circumvent some of these issues in a computationally e�cient manner. Thus, these methods

provide an avenue to develop novel detection methodologies. These approaches have the potential

to enhance automation and accuracy, o�ering improved earthquake detection capabilities in a variety

of complex and challenging scenarios. In the next section, AI and ML methods are introduced, and

their application to earthquake detection and location is summarised.
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2 Arti�cial intelligence, machine learning, and deep learning
In the recent years, the terms “arti�cial intelligence”, “machine learning”, and “deep learning” have

become increasingly pervasive in discussions spanning various disciplines. These concepts have tran-

scended their origins in computer science to impact �elds as diverse as science and technology [Xu

et al., 2021], education [Zawacki-Richter et al., 2019], agriculture [Eli-Chukwu, 2019], energy [Zahraee

et al., 2016], engineering [Shukla et al., 2019], medicine [Briganti and Le Moine, 2020], healthcare

[Haleem, 2023], manufacturing [Li et al., 2017], �nance [Ahmed et al., 2022], marketing [Haleem et al.,

2022], government [Ahn and Chen, 2020], and arts [Mazzone and Elgammal, 2019], and even our day-

to-day life (e.g., smart assistants, health and �tness apps, predictive text, and auto-correct) [Xu et al.,

2021]. While these terms are often used interchangeably, they do have slight di�erences in meaning

that are important to understand. In this section, we aim to make these concepts more accessible,

providing a basic understanding of what AI, ML, and DL entail and how they are impacting various

areas. While we won’t delve into intricate technical details, we will explore their di�erences, and the

di�erent types of ML and DL. We will also consider how these concepts explicitly relate to geophysics

and seismology.

2.1 Arti�cial Intelligence (AI)

Arti�cial intelligence, often abbreviated as AI, refers to the development of computer systems and

algorithms designed to perform tasks that would typically require human intelligence. These tasks

encompass a wide range of activities, including problem-solving [Rattan et al., 2022], pattern recogni-

tion, language understanding, decision-making, and learning from experience. The ultimate goal of

AI is to create machines and systems that can emulate human-like cognitive functions, enabling them

to adapt, improve, and excel in a variety of domains [Xu et al., 2021]. There are multiple de�nitions

for AI [Bini, 2018], but in computer science AI is the study of “intelligent agents”, which are devices

that “perceive their environment and take actions to maximise their chance of success at some goal”

[Poole et al., 1998, Shinde and Shah, 2018].

AI draws its inspiration from human intelligence and cognitive processes. The inception of modern AI

research can be attributed to John McCarthy, who introduced the term “arti�cial intelligence” during

a lecture held at Dartmouth College in 1956 [Benko and Lányi, 2009, Flasi�ski and Flasi�ski, 2016, Bini,

2018, Wang, 2019]. This historical milestone marked the initiation of AI as a distinct �eld. Rooted in

this history dating back to the mid-20th century, AI emerged as an academic discipline in the 1950s

including the work of Alan Turing’s “ComputingMachinery and Intelligence”, which raises the question

of whether machines can “think” [Turing, 1950].

However, for over half a century AI remained a relatively obscure concept from both a scienti�c and

practical standpoint [Haenlein and Kaplan, 2019]. AI experienced a resurgence in the 1980s when re-

search institutions and universities developed AI systems capable of summarising expert knowledge

into basic rules, aiding non-experts in decision-making processes [Xu et al., 2021]. This resurgence

was further fueled in 2006 [Helm et al., 2020, Xu et al., 2021], marked by a surge in AI research activ-

ity and the emergence of deep learning algorithms of Hinton et al. [2006], Hinton and Salakhutdinov

[2006]. Today, AI’s renewed vitality can be attributed to factors such as the proliferation of so-called
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“big data” (data that contains greater variety, arriving in increasing volumes, and with more velocity),

advancement in algorithms, advancement in computing powers, and others [Ergen, 2019].

Computing power, particularly graphical processing units (GPUs) [Martinez et al., 2019], and storage

infrastructure play vital roles, providing the necessary computational resources to process and anal-

yse vast data sets and store the models and data required for AI applications. Thus, the �eld of AI is

advancing at unprecedented pace. As depicted in Figure 3 and 4, the substantial growth in publica-

tions, across all AI �elds and by �eld of study respectively, serves as a testament to the accelerating

pace of AI development.

Figure 3: Evolution of AI publications from 2010 to 2021. This illustrates the increasing trend in the

number of AI publications worldwide over the years based on data sourced from the Center

for Security and Emerging Technology (September, 2023).

AI encompasses a broad framework that includes data collection and analysis, machine learning, nat-

ural language processing, computer vision, robotics, and ethical considerations, as shown in Figure 5.

It aims to replicate human-like abilities in machines and with diverse applications.

Figure 4: AI publications by �eld of study. from 2010 to 2021. This shows the number of publications

across various �eld of study, highlighting the increasing trend in the �eld of machine learn-

ing compared to others based on data sourced from the Center for Security and Emerging

Technology (September, 2023).
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Figure 5 visually illustrates the distinctions between AI, ML and DL, showing the hierarchical relation-

ship and roles within this �eld. The �eld of AI features a hierarchical relationship that encompasses

ML and, within ML, DL. AI serves as the overarching framework that seeks to replicate human-like

abilities in machines. ML represents a subset of AI, focusing on the development of algorithms that

enables computers to learn from data. DL, in turn, is a specialised form of ML that employs deep neu-

ral networks with multiple layers, enabling it to model and solve complex problems. The hierarchy

illustrates how AI encompasses a spectrum of technologies, with each level building upon the last,

contributing to the evolution of ”intelligent” systems.

Figure 5: Hierarchical Relationship between AI, ML, and DL. The �gure illustrates the hierarchical

structure, with AI encompassing various �elds, ML incorporating algorithms such as super-

vised, unsupervised and reinforcement learning, and DL comprising speci�c architectures

like Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Generative

Adversarial Network (GAN).

2.2 Machine learning: a subset of AI

Machine learning, as a subset of AI [Wang et al., 2009], encompasses algorithms and statistical mod-

els employed by computer systems to accomplish speci�c tasks without requiring explicit algorithmic

programming [Mahesh, 2020, Alzubi et al., 2018]. It explores to improve computer systems through

experience [Alzubi et al., 2018, Ray, 2019] and understanding universal learning principles across
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computers, humans, and organisations [Jordan and Mitchell, 2015]. It empowers software applica-

tions to enhance their predictive accuracy through autonomous learning from data, eliminating the

need for human intervention. In essence, it enables software applications to acquire knowledge inde-

pendently by adhering to prede�ned instructions [Madakam et al., 2022, El Naqa and Murphy, 2015,

Shalev-Shwartz and Ben-David, 2014].

The demand for ML functionality is growing rapidly [Mohr et al., 2018], and can be used in problems

such as classi�cation, regression, forecasting, anomaly detection, clustering, and dimensional reduc-

tion. The use of machine learning can be found in many �elds such as robotics, computer vision,

and language processing [Dash et al., 2020]. Figure 6 shows the machine learning cycle which is a

sequence of stages that includes data collection, pre-processing, feature extraction, model training,

evaluation, and deployment. It involves the process of transforming data into a model that can take

predictions or decisions, and it often includes ongoing monitoring and re�nement to maintain model

performance.

Within machine learning, features are properties or characteristics of data that can be the identi�ca-

tion or replication target of the algorithm. These are generally broken down into two types: numerical

and categorical. Seismic data, as a measurement of amplitude over time, can be treated a relatively

simple numerical feature. Other features that could be exploited in seismic data include the amplitude

in given frequency bands, the ratio of amplitudes in time windows, and the correlation of time series

over di�erent ranges. Categorical features are generally abstracted to numerical features through

some kind of encoding. Other examples of features in common machine learning methods include

edges or size of objects in computer vision, and the shape and number of �lled pixels in character

recognition.

12
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Figure 6: The iterative stages of machine learning, including data collection, processing, feature engi-

neering, algorithm selection, model training, evaluation, deployment, and ongoing mainte-

nance and monitoring, forming a cyclical process.

2.3 De�nitions and types of ML algorithms

Machine learning relies on di�erent algorithms to solve di�erent problems [Mahesh, 2020]. These al-

gorithms are categorised into a taxonomy based on the desired outcome of the algorithm [Osisanwo

et al., 2017]. Three primary categories of ML algorithms exist: supervised; unsupervised; and rein-

forcement [Pandey et al., 2019, Singh et al., 2016, Singh and Singh, 2019, Praveena and Jaiganesh,

2017]. Additionally, there is a fourth category known as semi-supervised, which emerges from the

fusion of supervised and unsupervised approaches.

Notable algorithms within the ML domain include: transduction; learning to learn; evolutionary learn-

ing; ensemble learning; instance-based learning; dimension reduction algorithms; and hybrid learn-

ing [Nasteski, 2017, Ayodele, 2010, Alzubi et al., 2018]. Although, there is no immediate answer to

which machine learning algorithm is right for a speci�c task, several factors can help re�ne the selec-

tion. These factors include the interpretation of the algorithm, number of data points and features,

data format, linearity of data, training time, prediction time, and memory limitations.

2.3.1 Supervised learning

Supervised learning is one of the fundamental methods in machine learning. In this type of learning,

the algorithm is providedwith a labelled data-set, which consists of input data pairedwith correspond-

ing target labels or outcomes. The goal of supervised learning is to learn a mapping function that can

predict the target labels accurately of unseen data [Muhammad and Yan, 2015].
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This learning category can performmainly two types of tasks: classi�cation and regression [El Mrabet

et al., 2021]. Supervised methods are used in various applications such as marketing, �nance, manu-

facturing, and stockmarket prediction [Praveena and Jaiganesh, 2017]. Themost common supervised

learning techniques are decision tree, k-nearest-neighbor, support vector machines, and naive Bayes

algorithms [Mohamed, 2017, Alloghani et al., 2020]. The schematic work�ow of supervised machine

learning algorithms is given in Figure 7.

Figure 7: The stages of supervised machine learning as shown, involving the input of labelled data

and feature extraction, followed by training, testing, and validation. The process includes a

train-validation loop (red-dashed line), leading to the development of a �nal model and con-

cluding with prediction. The labelled data is combined into amatrix structure, with features

(i.e., attributes or properties) converted into numerical values, in order to use it during the

feature extraction step. This is known as the feature matrix.

2.3.2 Unsupervised learning

In supervised learning, the algorithm is trained on a data set consisting of instances paired with their

corresponding known labels or outputs. In contrast, unsupervised learning deals with data sets where

instances lack prede�ned labels and are therefore unlabelled [Kotsiantis et al., 2007, Bhavsar and

Ganatra, 2012, Palacio-Niño and Berzal, 2019].

This type of machine learning algorithm arguably represents AI in its purest application, removed

from biases that can be introduced during the labelling process, and o�ers promising avenues to

learn from an abundance of unlabelled visual data [Chen et al., 2022]. Examples of unsupervised

learning algorithms include apriori algorithms, ECLAT, frequent pattern growth, k-means clustering,

and principal component analysis [Naeemet al., 2023]. K-means, hierarchical clustering, and principal

component analysis emerged as the most commonly used unsupervised techniques [Alloghani et al.,

2020]. Unsupervised machine learning �nds applications in diverse �elds, including customer seg-

mentation, anomaly detection [Omar et al., 2013], recommendation systems, image analysis [Raza

and Singh, 2021], bio-informatics [Greene et al., 2014], and data visualisation. It extracts patterns
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from unlabelled data, enabling data-driven decision-making. The work�ow of unsupervised machine

learning algorithms is shown in Figure 8.

Figure 8: The stages of unsupervised machine learning, starting with input data and feature extrac-

tion, selection of unsupervised algorithm and the development of a �nal model. The �nal

model �nally make predication’s on new data. The model can then be validated against a

subset of the training data which is held back from the input data, or some other bench-

marking algorithm.

2.3.3 Reinforcement learning

Reinforcement learning is a subset of machine learning that focuses on training intelligent “agents”

to make sequential decisions in an environment in order to maximise a cumulative “reward” [Sutton

and Barto, 2018, Thrun and Schwartz, 1994]. Unlike supervised learning, where themodel is provided

with labelled data, and unsupervised learning, which deals with �nding patterns in unlabelled data,

reinforcement learning relies on a feedback loop.

“Agents” learn by interacting with their environment, receiving rewards or penalties based on their

actions, and adjusting their “behaviour” over time through trial and error [Kaelbling et al., 1996, Sutton,

1992, Barto, 1997, Glorennec, 2000, Qiang and Zhongli, 2011]. The agent and environment are the

basic components of reinforcement learning [Ding et al., 2020]. The environment is an algorithm that

the agent, a weighted set of variables, can interact with, where the reward can reinforce inherent

behaviours in the model towards a speci�c outcome. This is shown schematically in Figure 9.

This paradigm has found applications in various �elds, from robotics [Kober et al., 2013] and game-

playing AI to autonomous driving [Shalev-Shwartz et al., 2016] and recommendation systems, show-

casing its versatility and potential to tackle complex decision-making tasks. The use of deep learning

is enabling the scaling up of reinforcement learning methods (in deep reinforcement learning, DRL)

[Arulkumaran et al., 2017].
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Figure 9: Reinforcement learning framework: at is the action taken by the “agent” at time t, st is the

state of the environment at time t, and rt+1 and st+1 stands for the reward and state at time

t+ 1 respectively.

2.4 Machine learning applications

Machine learning has foundmany real-world applications across a wide range of �elds [Sarker, 2021b,

Shinde and Shah, 2018]. In healthcare [Triantafyllidis and Tsanas, 2019], it assists in disease diagno-

sis and personalised treatment plans by analysing medical records and imaging data. Financial in-

stitutions use machine learning for fraud detection [Thennakoon et al., 2019] and risk assessment,

enhancing security and optimising investments. In the automotive sector, self-driving cars rely on

machine learning algorithms to navigate safely and e�ciently [Devi et al., 2020]. E-commerce plat-

forms employ recommendation systems that use machine learning to suggest products, enhancing

user experience and driving sales [Pallathadka et al., 2023]. Natural language processing [Otter et al.,

2020] enables virtual assistants to understand and respond to human language, while image recog-

nition powers facial recognition systems for security and accessibility. Climate scientists use machine

learning to model and predict climate patterns, aiding in climate change mitigation e�orts [Bochenek

and Ustrnul, 2022]. In essence, machine learning has permeated many industries [Larrañaga et al.,

2018].

2.5 Deep learning: a sub-�eld of ML

Deep learning is a subset ofmachine learning based on arti�cial neural networks [Janiesch et al., 2021,

Li, 2017, Guo et al., 2016, Cai et al., 2020]. The growth in data volume and computing capabilities has

led to increased interest in and the application of neural networks with more intricate architectures

across various domains [Hao et al., 2016]. In recent years, deep learning has emerged as the dominant

computational method within machine learning across a wide range of tasks [Alzubaidi et al., 2021].

It can often exceed human-level performance [Taye, 2023].

Deep neural networks with several layers have recently become a common focus of ML research

due to their performance gains [Karhunen et al., 2015, Ongsulee, 2017]. Deep learning techniques
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include convolution neural networks, recurrent neural networks, autoencoders, deep-belief networks,

recursive neural networks, and direct deep reinforcement learning [Shinde and Shah, 2018, Sarker,

2021a]. Due to their frequent use in earthquake detection methods, some of these deep learning

approaches are introduced in the following sections.

2.5.1 Deep learning: de�nitions and signi�cance

Deep learning is a sub-�eld of machine learning that focuses on training arti�cial neural networks

to automatically learn and extract intricate patterns and representations from large and complex

datasets [Vargas et al., 2017]. Inspired by the human brain [Shrestha and Mahmood, 2019], deep

learning models consist of multiple layers of interconnected nodes that process and transform data

hierarchically [Guo et al., 2016].

Thesemodels have demonstrated remarkable success in various domains, including image and speech

recognition [Rusk, 2016], natural language processing [Du et al., 2016], computer vision [Voulodimos

et al., 2018], and reinforcement learning [Mahmud et al., 2018]. Their ability to automatically discover

and represent intricate featuresmakes deep learning a powerful tool for tasks like image classi�cation

[Tamuly et al., 2020], language translation, and autonomous decision-making.

The biological neural network is a highly organised system that e�ciently processes information from

various senses using interconnected neurons. Arti�cial neural networks inmachine learning replicate

this structure to learn and recognise patterns in data [Suk, 2017]. Neural networks here refer to the

arti�cial neural networks rather than biological ones and the computational units are connected to

one another throughweights, factors applied to the node that are changedduring the training process

[Aggarwal et al., 2018].

These networks consist of interconnected nodes, or arti�cial neurons, organised into layers that pro-

cess and transform data. Each neuron is a mathematical processing unit and with all other neurons it

learns the relationship between the input features and output [Georgevici and Terblanche, 2019]. The

adaptability and ability to capture intricate features make neural networks a cornerstone of modern

AI.

Single-layer networks use a modi�ed linear function (a “perceptron”), while multi-layer networks ar-

range neurons into feed-forward layers, including input, hidden, and output layers [Choi et al., 2020].

Feed-forward layers are de�ned by one-way �owof information between their layers. Thismeans that

information moves strictly in a single direction from input nodes through hidden nodes and �nally to

the output nodes.

2.5.2 Deep learning vs. “traditional” ML

Machine learning traditionally relied onmanual feature engineering, where training and architectures

of layers were tuned to identify or replicate particular properties of the input data. Deep learning uses

neural networks (NNs) to automatically extract complex representations from raw data. Thus, DL can

perform better in so-called unstructured data tasks [Janiesch et al., 2021, Alom et al., 2019]. Deep

learning is successful in areas like image recognition and natural language processing [Pouyanfar

et al., 2018], but traditional machine learning is still relevant for structured data and interpretable
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models where transparency is vital. Transparency here means that the inner workings of the model

are more understandable and explainable, making it easier for humans to comprehend how the

model arrives at its decisions. Generally, deep learning techniques are now outperforming more

traditional machine learning methods [Mathew et al., 2021, Chauhan and Singh, 2018].

Deep learning and traditional machine learning di�er signi�cantly. Deep learning, especially deep

neural networks, excel with large datasets, automatically learning complex patterns. Traditional ma-

chine learning methods are generally more bound by the limits of the training data, with signi�cantly

reduced performance outside of these limits [Mathew et al., 2021, Khamparia and Singh, 2019].

Deep learning models often require extensive computational resources (and thus time) for training,

particularly with complex NN architectures and large datasets [Sarker, 2021a]. In contrast, traditional

machine learning models can be trained more quickly since they don’t require the intensive optimisa-

tion process of deep learning. DL can often be economically expensive to conduct due to the need for

powerful computer hardware, like graphics processing units (GPUs) or tensor processing unit (TPUs)

[Sarker, 2021a].

Most importantly, deep learning models are often seen as “black boxes” [Gupta et al., 2023]. Their

ability to distort the input data and �nd patterns through the setting of a very large number of param-

eters make it highly challenging to interpret their decisions. In contrast, traditional machine learning

models, with simpler algorithms and more interpretable features, are preferred for scenarios where

explainability of the model is crucial.

2.6 Deep learning architectures for earthquake detection

Discriminative deep learning aims to learn the boundary or decision boundary that separates di�er-

ent classes or categories data. These models are primarily used for classi�cation tasks, where the

goal is to map input data to a speci�c class label. Examples include the multi-layer perceptron (MLP),

convolutional neural networks (CNNs), and recurrent neural networks (RNNs) [Sarker, 2021a]. Dis-

criminative models focus on modelling the conditional probability of the class given the input data,

making them well-suited for tasks requiring precise classi�cation and prediction [Deng, 2012].

2.6.1 Multi-layer perceptron

AnMLP is a fundamental architecture in deep learning, composed ofmultiple interconnected layers of

arti�cial neurons. MLPs consist of an input layer, one ormore “hidden” layers, and an output layer [De-

lashmit et al., 2005, Singh and Banerjee, 2019]. This is shown in Figure 10. Each neuron in a layer that

processes input data, applies a non-linear activation function, and passes its output to neurons in the

next layer [Gardner and Dorling, 1998]. Through a process called backpropagation, MLPs learn to ad-

just the weighs of each node during training to make accurate predictions or classi�cations [Popescu

et al., 2009]. Backpropagation adjusts the model weights by minimising the di�erence between the

predicted and actual outputs, facilitating e�ective learning [Rumelhart et al., 1986].
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Figure 10: Multi-Layer perceptron (MLP) structure. The �gure illustrates the architecture of a multi-

layer perceptron, comprising an input layer, bias, hidden layers, and an output layer. The

connections between layers, represented by weights, contribute to the neural network’s

learning and predictive capabilities. Training involves adjusting weights (Wi) and biases

(Bi) to minimise error by making corrections between input-output pairs. Backpropaga-

tion, through forward (A) and backward (C) passes, compute gradients, guiding parame-

ter adjustments towards minimising errors (B), often employing optimisation algorithms

(black-dashed loop)

2.6.2 Convolutional neural networks

CNNs have become one of the most representative architectures in DL [Li et al., 2021, Gu et al., 2018,

Albawi et al., 2017]. They are designed for processing and analysing visual data, such as images and

videos. CNNs are inspired by the human visual system, featuring layers of neurons that apply convolu-

tional operations to input data. These operations involve sliding small �lters or kernels over the input,

capturing local patterns, and gradually extracting higher-level features as they progress through the

information in the image or data series [Yamashita et al., 2018]. They are comprised of the convolu-

tional layers, pooling layers, and the fully-connected layers [O’Shea and Nash, 2015]. This is shown in

Figure 11.

The classi�cation step shown in Figure 11 functions like a tradiational machine learning algorithm.

The �attening stage is conducted to convert the 2-dimensional convolutional matrices into a feature

vector, which the fully-connected layers and activation functions can act upon.

CNNs have undergone various developments and spawned several important variants that have im-

proved their performance in di�erent applications. Some notable CNN variants include, VGGNet [Si-

monyan and Zisserman, 2014], AlexNet [Krizhevsky et al., 2012], GoogLeNet (Inception) [Szegedy et al.,

2015], ResNet (Residual Network) [He et al., 2016], DenseNet [Huang et al., 2017], MobileNet [Howard
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et al., 2017], and Xception [Chollet, 2017]. These CNN variants have generally advanced the �eld of

computer vision, including image recognition, object detection, and image segmentation. New CNN

architectures and adaptations are developed to tackle di�erent tasks, though many of the above

methods can be used in more general ML applications.

Figure 11: Convolutional Neural Network (CNN). The �gure illustrates the sequential components of

CNN, featuring input with a kernel, convolution layers, pooling layers for feature learning,

followed by �attening, fully connected layers, and a softmax activation function layer for

classi�cation, ultimately leading to the network’s output.

2.6.3 Recurrent neural networks

RNNs have been an important focus of research and development during the 1990’s [Medsker and

Jain, 2001]. RNNs are a class of arti�cial neural networks designed for processing sequences of data

[Salehinejad et al., 2017, Sutskever et al., 2011, Lipton et al., 2015]. They are particularly well-suited

for tasks like natural language processing, speech recognition [Graves, 2013, Delashmit et al., 2005],

and time series analysis [Yu et al., 2019], hence their use in earthquake detection.

RNNs are characterised by their ability to maintain hidden states, which allows them to capture infor-

mation fromprevious time steps and use it to in�uence their current predictions. However, traditional

RNNs su�er from the vanishing gradient problem, which limits their ability to capture long-range de-

pendencies in sequences. Vanishing gradients in RNN occur when, during backpropagation from the

output to the input layer, the gradient diminishes exponentially, causing the weights of earlier layers

to remain nearly unchanged. This occurs in circumstances where the chosen activation functions lead

to outputs with very small changes with respect to the change in weights during the backpropagation

step.

The vanishing gradient problem hinders the learning of long-term dependencies, preventing gradient

descent fromconverging to the optimum. To address this issue, several variants have beendeveloped,

such as long short-termmemory (LSTM) networks, bidirectional LSTMs (BiLSTMs), and gated recurrent

units (GRUs) [Sutskever, 2013].

20



February 2024

LSTM networks use a more complex gating (refers to a mechanism that regulates the �ow of informa-

tion within the network) mechanism to better preserve and update information over time. BiLSTMs

process sequences in both forward and backward directions, enhancing their understanding of con-

text [Schuster and Paliwal, 1997]. GRUs o�er a simpli�ed gating mechanism compared to LSTMs

[Dey and Salem, 2017], which can make them more computationally e�cient [Fu et al., 2016] while

still addressing the vanishing gradient problem. These variants have become essential tools in deep

learning, enabling the modeling of sequential data with greater accuracy and e�ciency.

2.6.4 Generative networks

Generative deep learning focuses on generating new data that resembles the training data. These

models have applications in image generation, text-to-image synthesis, and data augmentation.

Generative adversarial networks (GANs) are class of deep learningmodels introduced by [Goodfellow

et al., 2014]. GANs are designed to address the challenge of generating realistic and high-quality data,

whether it be images, text, audio, or other forms of content. They consist of two neural networks, a

generator, and a discriminator [You et al., 2022], engaged in a competitive, adversarial process [Good-

fellow et al., 2014, Aggarwal et al., 2021, Gonog and Zhou, 2019]. The generator aims to create data

that is indistinguishable from real data, while the discriminator attempts to di�erentiate between gen-

uine and generated data as it is shown in Figure 12. Through iterative training, GANs learn to produce

increasingly authentic output, leading to impressive results in image synthesis, style transfer, super-

resolution, and more. GANs have recently achieved impressive results in real world applications [Bau

et al., 2018, Jabbar et al., 2021]. They have had a profound impact on the �elds of computer vision,

natural language processing [Durgadevi et al., 2021], and generative art, and they continue to drive

innovation in the realm of AI and creative content generation.

Figure 12: The generative adversarial network (GAN) framework, consisting of random noise input,

a (in this case pre-trained) generator network creating fake images, and a discriminator

network distinguishing between real images froma training set and generated fake images.

The discriminator provides an output indicating whether the input is real or fake. The

training of GANs would lead to the “fake” image shown here becoming more similar to the

“real” image through each iteration.
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AE are a class of neural networks designed for unsupervised learning and data compression [Sewak

et al., 2020]. They consist of an encoder, which compresses input data into a lower dimensional

representation (a “code”), and a decoder, which attempts to reconstruct the original data from this

compressed representation [Bank et al., 2023, Pinaya et al., 2020]. This is shown in Figure 13.

Autoencoders have a wide range of applications, including dimensionality reduction, denoising, and

anomaly detection. This makes them suited to �ltering tasks in seismology. Variants of autoencoders

have been developed to address speci�c challenges and extend their capabilities. Some notable vari-

ants include variational, sparse, denoising, contractive, and stacked autoencoders [Bank et al., 2023,

Burda et al., 2015].

Autoencoders and their variants are powerful tools for unsupervised learning and data transforma-

tion. They �nd applications in a broad range of domains. including computer vision, natural language

processing, and anomaly detection, by capturing meaningful representations of complex data.

Figure 13: Autoencoder. The structure of an autoencoder, including the input, encoder, code, de-

coder, adn output layers. The autoencoder is designed for unsupervised learning, aiming

to encode and then reconstruct the input data, e�ectively capturing essential features for

representation.

2.6.5 Hybrid and other architectures

Hybrid deep learning approaches combine elements of both discriminative and generative models

to leverage their respective strengths. These models aim to capture the joint distribution of data and

latent variables, making them versatile for a wide range of applications. Hybrid models are often

used when there is a need for both generative and discriminative precision in a single model [Sarker,
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2021a].

2.6.6 Deep transfer learning

Transfer learning (TL) is amachine learning technique that leverages knowledge gained from one task

to improve the performance of a related task [Pan and Yang, 2009, Weiss et al., 2016, Zhuang et al.,

2020]. It involves taking a pre-trainedmodel, typically trained on a large dataset for a speci�c task, and

�ne-tuning it on a new task with a smaller training dataset [Yang et al., 2020]. This approach allows

the model to inherit useful features and representations learned during the initial training, which

can signi�cantly speed up training, enhance acurracy (e.g., see Hattula et al. [2023] and the model’s

performance on the new task [Niu et al., 2020].

Deep transfer learning (DTL) is an advanced extension of transfer learning, primarily applied in the

context of deep neural networks and it reduces the reliance on extensive labelled data and training

costs [Iman et al., 2023]. In DTL, not only the �nal layers of the pre-trained model are �ne-tuned but

also intermediate layers are adapted to the new task. This technique is particularly valuable when

dealing with complex tasks and large datasets, as it enables the transfer of deeper andmore abstract

representations from the source task to the target task. DTL has found widespread applications in

various domains, such as computer vision, natural language processing, and reinforcement learning

[Taylor and Stone, 2009, Zhu et al., 2023c].

2.6.7 Deep reinforcement learning

Deep reinforcement learning (DRL) combines DL with reinforcement learning principles enabling ma-

chine learning models to make sequential decisions in complex environments [François-Lavet et al.,

2018]. DRL agents learn through trial and error, just like traditional reinforcement learning, but they

use deep neural networks to approximate complex, high-dimensional, state-action mappings (the re-

lationships between the current state of the system and the actions that the reinforcement learning

can take in that particular state) [Li, 2023]. This allows DRL systems to handle a wide range of tasks,

from game playing [Arulkumaran et al., 2017] and robotic control [Zhao et al., 2020] to autonomous

vehicles [Kiran et al., 2021] and recommendation systems.

2.6.8 Transformers

Transformers are a class of deep learning models that have had a profound impact on natural lan-

guage processing [Wolf et al., 2020] and a wide range of other machine learning tasks. Introduced in

Vaswani et al. [2017], transformers have revolutionised the �eld by using self-attention mechanisms

to process sequences of data, such as words in a sentence or pixels in an image, in parallel rather than

sequentially. This parallelisation greatly accelerates training and improves performance on tasks like

machine translation, text summarisation, sentiment analysis, and more. The transformer architec-

ture has since evolved into various forms, such as BERT [Devlin et al., 2018], and GPT [Brown et al.,

2020, Radford et al., 2018], each optimised for speci�c tasks.
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3 Machine learning in seismology
The rise of AI in geophysics is a rapidly growing phenomenon, transforming the way geophysicists

conduct research and analysis. Neural networks are gaining popularity in geophysics [Van der Baan

and Jutten, 2000]. AI technology is being applied in seismic interpretation [Wang et al., 2018, Silva

et al., 2019], speeding up the analysis of seismic data and providing valuable insights for oil and gas

exploration [Sircar et al., 2021, Tariq et al., 2021] and mineral exploration [Shirmard et al., 2022]. AI

also plays a crucial role in hazard assessment [Gitis and Derendyaev, 2019, Harirchian et al., 2020],

predicting natural disasters, aiding disaster management e�orts and others. In the �eld of climate

science [Rolnick et al., 2022, Monteleoni et al., 2013], AI models analyse complex climate data tomake

accurate predictions about future climate trends. Challenges include data quality, data availability and

others. Despite these challenges, the potential bene�ts of AI in geophysics are substantial, making it

an integral part of the �eld’s future.

Seismology studies the propagation of elastic waves to study their sources, including earthquakes

and explosions, and the structure of Earth. Seismological studies record data across a broad range

of frequencies to study structures of di�erent length scales. In modern seismology, large numbers of

sensors are used to imporve the resolution of many of the underlying imaging methods. Seismology

is a data-rich �eld, whichmakes it an ideal domain for ML [Kong et al., 2019]. This large increase in the

volume of data used in seismology has made it natural to employ the use of ML. These techniques

can help quickly analyse the large quantities of data gathered from sensors.

3.1 Data and preprocessing

ML and DL algorithms, although diverse in their implementation, tend follow a basic work�ow that

includes data collection and preprocessing [Kong et al., 2019]. Seismic data typically collected from a

network of sensors or seismometers, is often large and complex. To render this data suitable for ML

analysis or training, a series of preprocessing steps is necessary. These may include data cleaning to

eliminate noise, re-sampling to ensure uniform time intervals, and �ltering to enhance the signal-to-

noise ratio.

Signi�cant data preprocessing does add an additional challenge when applied to earthquake detec-

tion. It is likely that for many applications where the performance of traditional detection methods

is deemed satisfactory, many of the ML methods described will not be used. The additional informa-

tion gained may not be considered su�cient to justify the additional work required to properly tune,

apply, and interrogate the ML techniques. This is a judgement to be made on a dataset-by-dateset

basis.

Feature engineering is a critical step when usingML on seismic data, where domain-speci�c attributes

such as spectral characteristics or time-frequency representations are calculated to capture relevant

information. Moreover, data augmentation techniques can be applied to expand the seismic dataset,

particularly when dealing with limited seismic event occurrences.
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3.2 ML and DL applications in geophysics

ML techniques are becoming increasingly widespread in seismology, with various applications [Kong

et al., 2019, Bergen et al., 2019]. DL particularly has attracted increasing attention in the geophysical

community, resulting in many opportunities and challenges, as described below.

ML and DL can signi�cantly improve our capability for seismic data processing [Mousavi and Beroza,

2023] and have been used in various applications. Some of the applications of ML and DL in seismol-

ogy include, seismic lithology prediction [Zhang et al., 2018], seismic data inversion [Li et al., 2019,

Zheng et al., 2019, Zhang et al., 2021], phase picking [Wang et al., 2019, Woollam et al., 2022, Chai

et al., 2020, Lapins et al., 2021, Zhu and Beroza, 2019, Mousavi et al., 2020, Soto and Schurr, 2021,

Ross et al., 2018a, Bornstein et al., 2023], phase detection [Ross et al., 2018b, Reynen and Audet,

2017, Yoon et al., 2015, Chen and Li, 2022], seismic phase association [Ross et al., 2019, McBrearty

and Beroza, 2023], event classi�cation [Trani et al., 2022], fast simulation of seismic waves in complex

media [Moseley et al., 2020], full-waveform inversion [Liu et al., 2021], earthquake early warning [Li

et al., 2018], earthquake monitoring [Zhu et al., 2023b], tomography [Bianco et al., 2019], earthquake

forecasting [Beroza et al., 2021], microseismic monitoring [Anikiev et al., 2023], distributed acoustic

sensing (DAS) [Shiloh et al., 2019, Hernández et al., 2022, Stork et al., 2020, Zhu et al., 2023a, Van den

Ende and Ampuero, 2021, Batson and Royer, 2019], and carbon capture and storage (CCS) [Yao et al.,

2023, Wen et al., 2021, Menad et al., 2019, Kaur et al., 2023].

3.2.1 Phase picking and earthquake detection

Phase picking plays a fundamental role in seismic analysis as it serves as the cornerstone for all further

processes [Zhu and Beroza, 2019, Guo et al., 2020], including tomography, source characterisation,

and others. The precise identi�cation of seismic phases is the foundation upon which seismic studies

are built.

Phase picking and earthquake detection have recently been the focus of ML research [Jiao and Alavi,

2020]. ML and DL have improved performance in the �eld of phase picking and earthquake detection

by automating seismic event identi�cation. The main models used are explained in the next section.

In phase picking, ML algorithms can analyse seismic waveforms to identify the arrival times of var-

ious phases, such as P- and S-waves. DL, with its neural networks and hierarchical feature extrac-

tion, has proven particularly e�ective in discerning subtle patterns in seismic data. These techniques

can rapidly process and classify seismic signals, distinguishing genuine earthquake events from back-

ground noise. As the volume of seismic data continues to grow, the synergy between ML, DL and

seismology holds great promise for advancing our understanding of the subsurface and response to

earthquakes.

3.3 Deep learning architectures for detection

Deep learning architectures andmodels have brought a new dimension to earthquake detection, par-

ticularly phase picking. Several models have been developed to learn complex patterns and features

within speci�c databases of seismic waveforms, allowing for accurate and e�cient identi�cation of

arrivals. DL models have also been adapted to improve performance over time, or use in an alterna-

tive setting. As models are “exposed” to more seismic data, this continuously re�nes and optimises
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phase picking algorithms to become more versatile, ultimately contributing to more precise seismic

event detection and analysis over a broader geographical range.

The most often used deep learning architectures in seismology are CNNs and RNNs [Mousavi and

Beroza, 2022]. Both have been applied to automatic phase picking, with CNNs being used for their

ability to capture spatial features in seismic waveforms, and RNNs handling temporal dependencies.

Furthermore, newer architectures like transformer based models [Mousavi et al., 2020], which excel

in sequence-to-sequence tasks, are showing promise for earthquake detection and source parameter

estimation by e�ectively handling time-series data.

U-Net, a specialised CNN architecture, excels at precisely delineating object boundaries and capturing

�ne-grained details within images, making it a powerful tool for di�erent applications where accurate

segmentation is crucial. This architecture has had a signi�cant impact on the �eld of image segmen-

tation and continues to be widely used for various pixel-wise classi�cation tasks. When examining

seismic data in the form of images – a method that has been pplied to, for example, �bre optic dis-

tributed acoustic sensing data – this particular architecture has been shown to be quite e�ective [Stork

et al., 2020].

3.3.1 Transfer Learning

Transfer learning has also been applied in the domain of phase picking. This approach leverages

the knowledge gained from broader seismic data and generalises it to specialised context of other

datasets. Lapins et al. [2021] apply this approach to volcano seismology. They adapted these pre-

trained models, improving the accuracy and e�ciency of phase picking for volcanic earthquakes,

which often present unique challenges due to their distinct seismic signatures. This method not only

accelerates the development of robust models but also reduces the need for extensive labelled data,

and computing resources.

3.4 Current ML detection algorithms

The most prominent of the ML-based phase detection algorithms are EQTransformer [Mousavi et al.,

2020], GPD [Ross et al., 2018b], and PhaseNet [Zhu and Beroza, 2019]. Variants and other models

include U-GPD [Lapins et al., 2021], CRED [Mousavi et al., 2019], DPP [Soto and Schurr, 2021], and

BasicPhaseAE [Woollam et al., 2019]. These algorithms, otherwise known as models, are trained on

various seismic data and tectonic environments, and have advanced the automation and accuracy

of phase picking in seismic waveform data. Detailed information about their architectures and per-

formance can be found in the cited articles, and brief summaries of the most prominent models are

given below. Table 1 also provides a condensed overview of each model’s speci�c features.

Some of the models summarised here deal with earthquake detection, some phases picking, and

some both. This distinction is generally a matter of accuracy. Algorithms which just do detection

will give areas of the time series where an event signal is likely to have been found. However, phase

pickingmodelswill also give the incident time, and often associate, P-, S-, and sometimes other phases.

These picking models will have been trained on pick time data for speci�c phases, manually labelled

from large earthquake databases.
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EQTransformer is a deep learning model designed for simultaneous earthquake detection and phase

identi�cation. This model is adept at recognising earthquake signals and accurately determining the

initial P and S phases in single-station data recorded at local epicentral distances (<300 km), leverag-

ing an attentionmechanism. The neural network follows amulti-task structure, featuring a very-deep

encoder and three distinct decoders that incorporate a range of architectural elements, including 1D

convolutions, bi-directional and uni-directional long-short-term memories (LSTM), residual connec-

tions, feed-forward layers, transformer and self-attentive layers.

For training, EQTransformer uses the STanford EArthquakeDatasets (STEAD), a comprehensive global

dataset containing manually labelled earthquake and non-earthquake signals. The dataset is par-

titioned randomly into training (85 percent), validation (5 percent) and test (10 percent) sets. The

waveform are 1 minute duration, sampled at 100 Hz, and causally band-pass �ltered within the range

of 1 to 45 Hz [Mousavi et al., 2020].

GPD, a convolutional neural network (ConvNet), has been trained on extensive hand-labelled datasets

from the Southern California Seismic Network to identify seismic body-wave phases. This approach,

known as generalised phase detection (GPD), excels in reliably detecting P and Swaves across a broad

range of earthquake magnitudes, eliminating the need for explicit waveform templates. The prepro-

cessing steps involved de-trending and high-pass �ltering data above 2 Hz to eliminate microseismic

noise. The record has a �xed duration of 4 seconds (400 samples) [Ross et al., 2018b].

PhaseNet is a model designed for determining the arrival times of P and S waves in seismic wave-

forms. Using three-component seismic waveforms as input, PhaseNet employs a modi�ed U-Net

architecture tailored for 1-D time-series data. The model produces probability distributions for P and

S arrivals, and background noise as its output. The training process involves a substantial dataset

with over 700,000 waveform samples extracted from more than 30 years of earthquake recordings,

labelled by analysts at the Northern California Earthquake Data Center. The input and sequence con-

sist of 3001 data points for each component, equivalent to a 30-second duration sampled at 100 Hz

[Zhu and Beroza, 2019].

These models collectively represent the ongoing drive to leverage the capabilities of deep learning

in earthquake detection and phase picking. This o�ers the potential to enhance the timeliness and

accuracy of seismic event identi�cation and analysis. Ultimately, these models each contribute to

improved earthquake monitoring and early warning systems.

Table 1: Main earthquake detection ML models. Acronyms: PP - phase picking; PD - phase detection;

NC - northern Chile; NCa - northern California; SCa - southern California; STEAD - STanford

EArthquake Datasets.

Description EQT GPD PhaseNet DPP CRED BasicPhaseAE

Architecture CNN-RNN-Attention CNN U-Net CNN/RNN CNN-RNN U-Net
Training Data STEAD SCa NCa NC SCa NC
Parameters 376,935 1,741,003 23,305 199,731/546,081 293,569 33,687
Application PP,PD PP PP PP PD PP
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3.5 Machine learning toolbox for seismology

To use ML-based detection methods, high quality training data is required. Another requirement is

a performance test of each of the above models for the speci�c data one is applying the models to.

SeisBench [Woollam et al., 2022] is a Python-based suite of codes that was developed to compare

the performance of the above models, and provide a toolbox for the application of ML algorithms

to seismic datasets. The growing number of detection algorithms provided clear motivation for a

standardised and uni�ed bench-marking framework for ML detection models.

SeisBench o�ers an open-source software solution, accessible via GitHub, streamlining access to both

machine learning models and datasets. It further simpli�es the application of standard data process-

ing and augmentation techniques. This toolbox provides seismologists with an entry point to a diverse

array of machine learning models and benchmarking datasets, and encourages community involve-

ment. This ensures its adaptability and relevance in the growing landscape ofmachine learning within

seismology.
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4 Machine learning in CO2 storage monitoring
In the previous section, we explored the applications of ML and DL in earthquake seismology (e.g. see

[Mousavi and Beroza, 2023]). This section investigates the potential application of ML and DL in CO2

storage monitoring.

Yao et al. [2023] conducted an extensive examination of ML applications within the �eld of CCS. Their

investigation revealed that ML algorithms, such as arti�cal neural networks and convolutional neural

networks, were commonly employed for tasks such as predicting physical properties, assessing me-

chanical stability, and monitoring the migration and leakage of carbon dioxide plumes during carbon

dioxide storage. DLmethods, including GAN and LSTM, exhibited promising performance in real-time

monitoring of carbon dioxidemigration and leakage. Decision trees and random forests were primar-

ily employed to establish frameworks for risk assessment and decision analysis, as well as to estimate

the success probability of CCS.

Wen et al. [2023] presented the nested Fourier neural operator (Nested FNO), a machine learning ap-

proach for dynamic 3D carbondioxide storagemodeling on abasin scale. Figure 14 illustrates the FNO.

Thismethod serves as a versatile numerical simulator, suitable for diverse carbon dioxide storage sce-

narios, including varying reservoir conditions, geological heterogeneity, and injection strategies. The

novel deep learning architecture, Fourier neural operator was introduced by Li et al. [2020].

Figure 14: The process of the FNO. The input function V(x) takes two paths through the Fourier layers.
In the top path, V(x) undergoes a Fourier transform F, a linear transform R applied to the

lower Fourier modes, and an inverse Fourier transform F�1. Meanwhile, in the bottom

path, V(x) experiences only a local linear transform W. The outputs of both paths are then

combined, and an activation function � is applied.

4.1 SHARP activities

Within the SHARP project speci�cally, there are several tasks which could be augmented and poten-

tially enhanced through the application of ML methods. Naturally, the most obvious application is

in the detection of earthquakes, used for building earthquake databases. ML techniques may im-

prove the detection capabilities of earthquake monitoring agencies more generally, potentially �nd-

ing smaller and a greater variety of earthquake signals.

ML-based de-noising algorithms could also improve �ltering of waveforms, either an input for ML-
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based detection ormore conventional detection algorithms. This task, particularly for large quantities

of data, can be very computationally expensive, requiring repeated transformations of the data. Using

MLmethods could facilitate faster bulk denoising andmake pre-processing of some large continuous

datasets now a manageable proposition.

There is likely an opportunity to use the large catalogue of earthquakes and their associated wave-

forms, produced by work package 2 (Seismology), as a training dataset to study ML detection for

North Sea seismicity. Having catalogued the data, it could act as a good foundation for an application

of transfer learning, customising a trained model for the application to the North Sea. This would be

tuned in terms of the characteristics of both the earthquake and the monitoring networks. With the

increasing use of �bre optic DAS systems for passive seismic monitoring, ML-methods will likely be

needed in both event detection and denoising.

Many of the tasks in bothwork package 2 (Seismology) and 5 (Hazards and RiskQuanti�cation) require

high quality (e.g., high SNR) waveforms. These tasks include ground motion model calibration, stress

drop measurements, and focal mechanism inversion. ML detection routines could also be employed

to identify the quality of waveforms, providing another means of automating these analyses.

Similar methods could also be employed in the ground motion characterisation work. Site ampli�ca-

tion e�ects are studied through themeasurement of the decay of high frequency energy, as recorded

by broadband seismometers. These e�ects can be di�cult to measure, particularly when there is

aberrant spikes in noise in the high frequencies. Identifying these noise spikes can be time consum-

ing, requiring time series data to be transformed into the frequency domain, and examining of the

spectral ratio of the horizontal and vertical components. This is usually carried out manually. ML

methods could be employed to signi�cantly reduce the time taken to identify these unwanted noise

spikes, using purely time series data. However, a larger collection of labelled training data would

potentially be required for this task.
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5 Challenges and future directions
5.1 Challenges in Machine Learning-Based Earthquake Detection

Machine learning, including deep learning, has shown great potential in earthquake detection and

other applications, but it faces certain challenges. Firstly, data availability and quality are crucial for

training accurate models, and for example access to comprehensive and high-quality hand labelled

data can be a limitation [Mousavi and Beroza, 2022].

Second, model interpretability is a signi�cant concern, as understanding why a model makes speci�c

predictions is essential for building trust and making informed decisions. Neural networks continue

to be treated mostly as black-box functions, where they map a given input to produce a classi�ca-

tion output [Chakraborty et al., 2017, Zhang and Zhu, 2018, Li et al., 2022]. This characterisation

arises from the inherent complexity of the models, as they intricately map input data to produce

classi�cation outputs without o�ering readily understandable explanations for their decision-making

processes. The challenge, therefore, lies in bridging the gap between the high-level abstraction of

neural networks and the need for transparent, interpretable insights to ensure the responsible and

accountable deployment of models in real-world applications.

Moreover, scalability and uncertainty quanti�cation are vital, especially in tectonic earthquake mon-

itoring, where timely alerts can be hugely impactful. Uncertainty quanti�cation can be developed in

many ways, either numerically or probabilistically [Abdar et al., 2021]. Whilst many earthquake detec-

tion algorithms give some kind of qualify score to their signal detections, the exact metrics used and

underlying physical phenomena that are being identi�ed are still under-developed. In phase picking

ML algorithms, the widths of the activation functions, giving the likelihood of a detection of a speci�c

phase over time, can give some approximation to the precision in themeasurement. However, due to

the convolutional nature of many of these algorithms, the factors which a�ect the width of these func-

tions, and thus the pick uncertainty, is complex and requires systematic analysis on speci�c datasets.

5.2 Future Directions and Emerging Technologies

At present, the majority of deep learning methods applied in seismology primarily focus on construct-

ing models using established input-output pairs – training data of detections are feed in and new

detections are made in time series that the model has not seen before. Models are generally being

used to forecast outcomes for new, unseen inputs. The nature of the detections being made, or not

made, often lack interpretability or explainability [Mousavi and Beroza, 2022]. This is a core challenge

in ML more generally, but is critical in seismology, where comlpeteness of catalogues is fundamental

to many studies. Explainable AI [Ho�man et al., 2018, Xu et al., 2019, Holzinger et al., 2020] holds

promise in making deep learning models more transparent and interpretable, and may aid seismol-

ogists in understanding the decision-making processes of these models.

Quantummachine learning is another emerging technology thatmay outperform classical computers

on machine learning tasks [Biamonte et al., 2017, Schuld et al., 2015], improving performance and

signi�cantly decreasing training time for large models.

DL seismology is rapidly advancing. The focus remains on incorporating domain knowledge and phys-
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ical laws, enhancing interpretability, addressing noisy data, and generalising beyond known parame-

ters. Strategies include data augmentation, physics-inspired architectures, and introducing physical

constrains [bin Waheed et al., 2021]. This fusion o�ers exciting prospects for solving seismological

challenges, driving innovation and broader applications in the �eld [Mousavi and Beroza, 2022, 2023].
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